若XYZ均为正整数,则(xy+yz)/[(x^2)+(y^2)+(z^2)]的最大值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:51:01
若XYZ均为正整数,则(xy+yz)/[(x^2)+(y^2)+(z^2)]的最大值为
若XYZ均为正整数,则(xy+yz)/[(x^2)+(y^2)+(z^2)]的最大值为
若XYZ均为正整数,则(xy+yz)/[(x^2)+(y^2)+(z^2)]的最大值为
(x^2)+(y^2)+(z^2)
= x^2 + 1/2y^2 + 1/2y^2 + z^2
≥ 2√(1/2)xy + 2√(1/2)yz
=√2 (xy+yz)
所以(xy+yz)/[(x^2)+(y^2)+(z^2)] ≤ √2/2
最大值为√2/2
当√2x = y = √2z时取得
(注:这里x,y,z应该是正数,而不是正整数,否则无法取得最大值√2/2,但可以无限接近)
(xy+yz)/[(x^2)+(y^2)+(z^2)]
=2(xy+yz)/[2(x^2)+2(y^2)+2(z^2)]
=2(xy+yz)/[(2(x^2)+(y^2))+((y^2)+2(z^2))]
2(x^2)+(y^2) >= 2(2(x^2)*(y^2))^(1/2) = 2xy* 2^(1/2) 当且仅当2x^2=y^2
(y^2)+2(z^2) >=...
全部展开
(xy+yz)/[(x^2)+(y^2)+(z^2)]
=2(xy+yz)/[2(x^2)+2(y^2)+2(z^2)]
=2(xy+yz)/[(2(x^2)+(y^2))+((y^2)+2(z^2))]
2(x^2)+(y^2) >= 2(2(x^2)*(y^2))^(1/2) = 2xy* 2^(1/2) 当且仅当2x^2=y^2
(y^2)+2(z^2) >= 2(2(z^2)*(y^2))^(1/2) = 2yz* 2^(1/2)当且仅当2z^2=y^2
2(x^2)+(y^2) + (y^2)+2(z^2) >= 2*2^(1/2) *(xy + yz) 此时要求以上两个条件都成立
2(xy+yz)/[(2(x^2)+(y^2))+((y^2)+2(z^2))] <= 2(xy+yz)/(2*2^(1/2) *(xy + yz)) = 2^(-1/2)
即最大值为根号2 分之一
收起