lim n^2{(k/n)-(1/n+1)-(1/n+2)-.-(1/n+k)}(其中K是与N无关的常数)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:37:59
lim n^2{(k/n)-(1/n+1)-(1/n+2)-.-(1/n+k)}(其中K是与N无关的常数)
lim n^2{(k/n)-(1/n+1)-(1/n+2)-.-(1/n+k)}(其中K是与N无关的常数)
lim n^2{(k/n)-(1/n+1)-(1/n+2)-.-(1/n+k)}(其中K是与N无关的常数)
n^2{(k/n)-(1/n+1)-(1/n+2)-.-(1/n+k)}
=nn{(1/n-1/n+1)+(1/n-1/n+2)+……+(1/n-1/n+k)}
=nn{1/n(n+1)+2/n(n+2)+……+k/n(n+k)}
=n{1/(n+1)+2/(n+2)+……+k/(n+k)}
lim(n{1/(n+1)+2/(n+2)+……+k/(n+k)})
=
lim(n{1/(n+k)+2/(n+k)+……+k/(n+k)})
=k(k+1)/2*lim(n/(n+k))
=k(k+1)/2
=>
lim n^2{(k/n)-(1/n+1)-(1/n+2)-.-(1/n+k)}
=k(k+1)/2
求lim n→+∞(1/n^k+2/n^k+ +n/n^k)有三种情况,
(n->00) Lim(n+k)/(n^2+k)(n从1—直加到n)
数列极限 lim[kn^2/n-n^2/(n+1)-n^2/(n+2)-...-n^2/(n+k)]
求下列极限 lim(n→∞)(1+2+.+n)/n^k k为常数
lim(n→∞)∑(k=1,n)k/(n^2+n+k)
求极限lim(n→∞)∑(k=1,n)k/(n^2+n+k)详细过程
lim n^2(k/n-1/n+1-1/n+2-.-1/n+k)(其中K是与N无关的常数)谢谢个路大侠lim n^2{(k/n)-(1/n+1)-(1/n+2)-....-(1/n+k)}(其中K是与N无关的常数)lim下有N-正无穷
lim(n+3)(4-n)/(n-1)(3-2n)
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】
lim(2^n+3^n)^1
(n趋向无穷)
lim(n^3+n)/(n^4-3n^2+1)
lim n^2{(k/n)-(1/n+1)-(1/n+2)-.-(1/n+k)}(其中K是与N无关的常数)
lim(n趋向于无穷)(k/n-1/n+1-1/n+2-‘‘‘‘-1/n+k)(其中K为与N无关的正整数)
lim(n→∞)∑(k=1,n)1/k(k+2)
用定积分求极限lim(n->∞)∑(k=1,n)n/(n^2+k^2)
求极限(1)lim(n->∞)∫(0,1)x^n/(1+x)dx (2)lim(n->∞)∫(n+k,n)sinx/xdx (k>0)
计算lim(1/n^2+1+2/n^2+1+…+2k/n^2+1)
求数分大神lim(n→∞)∑(k=1→n)√((n+k)(n+k+1)/n^4)