一道超难的几何难题已知正方形ABCD,在其中有一点P,连接AP,BP,CP,DP,且角PAB,PBA都等于15度,证明三角形PCD为等边三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:37:10

一道超难的几何难题已知正方形ABCD,在其中有一点P,连接AP,BP,CP,DP,且角PAB,PBA都等于15度,证明三角形PCD为等边三角形
一道超难的几何难题
已知正方形ABCD,在其中有一点P,连接AP,BP,CP,DP,且角PAB,PBA都等于15度,证明三角形PCD为等边三角形

一道超难的几何难题已知正方形ABCD,在其中有一点P,连接AP,BP,CP,DP,且角PAB,PBA都等于15度,证明三角形PCD为等边三角形
他的回答是错误的,那只是指出了必要条件,而不是充分条件,所以是错误的

用反证法:
因为三角形PCD为等边三角形
所以角PDC=60°
因为正方形ABCD
所以∠ADP=30°
因为△PCD是等边三角形
∴PD=DC=AD
∵AD=PD
∴△ADP是等腰三角形
∴∠DAP=75°
∴∠PAB=15°
∴△PCD 是等边三角形!

注:在三角形pCD上下文章 证明:在正方形内做△DGC与△ADP全等,
∴DP=DG,∠ADP=∠GDC=∠DAP=∠DCG=15°,
∴∠PDG=90°﹣15°﹣15°=60°,∠DGC=180°﹣15°﹣15°=150°,
∴△PDG为等边,三角形,
∴D...

全部展开

注:在三角形pCD上下文章 证明:在正方形内做△DGC与△ADP全等,
∴DP=DG,∠ADP=∠GDC=∠DAP=∠DCG=15°,
∴∠PDG=90°﹣15°﹣15°=60°,∠DGC=180°﹣15°﹣15°=150°,
∴△PDG为等边,三角形,
∴DP=DG=PG,
∠PGC=360°﹣150°﹣60°=150°=∠DGC,
在△DGC△PGC中

∴△DGC≌△PGC,
∴PC=AD=DC,和∠DCG=∠PCG=15°,
同理PB=AB=DC=PC,
∠PCB=90°﹣15°﹣15°=60°,
∴△PBC是正三角形.

收起

一道超难的几何难题已知正方形ABCD,在其中有一点P,连接AP,BP,CP,DP,且角PAB,PBA都等于15度,证明三角形PCD为等边三角形 一道超难的几何题 求高手来解几何难题(初中)已知:正方形ABCD和正方形BMFE,点M和点F在正方形ABCD内,点E在正方形ABCD外,连接AM,连接DF,求:AM比DF 一道数学几何难题如图,在正方形ABCD中,M,N分别在BC,CD上,∠MAN=45°,AB=2,MN=1.5,求△AMN的面积. 求教一道几何难题:正方形ABCD有一个外截四边形EFGH,满足AE=BF=CG=DH,求证:四边形EFGH是正方形.注意:EFGH是在正方形ABCD外面的ABCD是正方形,外面的EFGH只是四边形 一道几何难题 正方形ABCD中,N在CD边上,NC=2ND,M是AD边上异于D的一点,角NMB=角MBC,求角ABM的正切值 一道数学几何难题?已知平行四边形ABCD中,点E是AB的中点,在线段AD上截取AF=2FD,EF交AC于G,则AG:AC=? 挺难的初二几何题,一道,如图,已知在正方形ABCD中,E是DC的中点,F是DA的中点,BE、CF相交于点P,求证:AP=AB图: 中学几何超难题目 一道超难题 一道几何难难题不用余弦定理 一道几何证明难题 求解一道几何难题 一道几何难题, 问一道超难的初中数学几何题, §※一道简单的几何题※§在正方形ABCD中有一点E,已知AE+BE+CE的最小值是√6+√2,求正方形的边长.正确答案是2 圆的几何难题一个正方形ABCD,顶点A、D在半圆上,B、C在半圆直径PQ上,正方形CEFG中E在PQ上,F在半圆上,G在CD上求证:AB=2CE 一道证明几何题在正方体ABCD-A1B1C1D1中,E是BB1的中点,O是底面正方形ABCD的中心.求证OE垂直ACD1平面