如图 Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k.如果MK²+CK²=AM²,写出∠CDF的度数和MK/AM的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:43:26

如图 Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k.如果MK²+CK²=AM²,写出∠CDF的度数和MK/AM的值
如图 Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k.如果MK²+CK²=AM²,写出∠CDF的度数和MK/AM的值

如图 Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k.如果MK²+CK²=AM²,写出∠CDF的度数和MK/AM的值
从图中可以看出,Rt△EDF的位置实际是围绕着D点旋转的.根据题目中的条件,我们很快就得出一个极端的情况,就是当F点和C点重合的时,此时CK=0,MK=AM,∠CDF=0.这是一种特殊的情况,并且ED平分∠ADC.因此∠CDF=0,MK/AM=1

好几幅图呢,你要哪幅的角度啊?

你要哪幅的角度

图看不清

如图1,Rt△ABC≌Rt△EDF,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k RT△ABC≡RT△FED,∩BCA=∩EDF=90°如图,在同一平面内,Rt△ABC≌Rt△FED,其中∠BCA=∠EDF=90°,∠B=∠E=30°,AC=FD=根号3,开始时,AC与FD重合.△DEF不动,让△ABC沿BE方向以每秒1个单位的速度向右平移,直到点c与 如图 Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M,K.(2)猜想:如图1,当0° 已知在Rt△ABC中,AC=BC,∠C=90°,D为边AB的中点,∠EDF=90°如图,已知Rt三角形ABC中,AC=BC,角C=90度,D为AB边的中点,角EDF=90度,角EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F,当角EDF绕D 如图 Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k.如果MK²+CK²=AM²,写出∠CDF的度数和MK/AM的值 如图 Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k.如果MK²+CK²=AM²,写出∠CDF的度数和MK/AM的值 已知RT△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF-90°,∠EDF绕D点旋转,它的两边分别交AC,CB(或他们的延长线)于E,F.当∠EDF饶点D旋转到DE⊥AC于E时(如图①)易证S△DEF+S△CEF=1/2S△ABC.当∠EDF饶点D 已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF= 12S△ABC;当∠EDF 如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段AC于点M,K.(1)观察:①如图2、图3,当∠CDF=0°或60°时,AM+CK...MK(填“>”,“<”或“=”);②如图4, 如图,△ABC是边长为1的等边三角形,BD=CD,∠BDC=120°,E.F分别在AB,AC上,且∠EDF等于60°,求△AEF的周RT 如图,Rt△ABC中,∠C=90°,AC=BC,点D为AB的中点,AE=4,BF=3,且∠EDF=90°,求EF的长 如图,在RT△ABC中,∠BAC=90°,AD⊥BC,E,F分别是AC,AB的中点,连接DE,DF,试说明∠EDF=90° 如图,在Rt△ABC中∠BAC=90°,AD⊥BC,E,F分别是AC,AB的中点,连接DE,DF,试说明∠EDF=90° Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M,K问题3,如果MK²+CK²=AM²,直接写出∠CDF的度数,并求出MK/AM的值.如图 已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=1 2 S△ABC;( 2.(2009•鸡西)已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DE 已知在RT△ABC中,∠C等于90° BC=4 AC=8 在RT△EDF中,∠DEF=45° EF=AC=8...已知在RT△ABC中,∠C等于90° BC=4 AC=8 在RT△EDF中,∠DEF=45° EF=AC=8 现将两个三角形按如图放置 CE重合,且BCEF在同一直线上,将△EDF沿 根据下列条件求sinA,cosA,tanA的值.(1)如图,Rt△ABC中,∠C=Rt∠,AC=3,AB=5.2)如图,在Rt△ABC中,∠C=Rt∠,根据下列条件求sinA,cosA,tanA的值.(1)如图1,在Rt△ABC中,∠C=Rt∠,AC=3,AB=5;(2)如图2,在Rt△ABC中,∠C=Rt∠,AC