若M=(x^a+2x^2+1)(x^4-2x^2+1),N=(x^4+x^2+1)(x^4-x^2+1)试比较M与N的大小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:38:38

若M=(x^a+2x^2+1)(x^4-2x^2+1),N=(x^4+x^2+1)(x^4-x^2+1)试比较M与N的大小
若M=(x^a+2x^2+1)(x^4-2x^2+1),N=(x^4+x^2+1)(x^4-x^2+1)试比较M与N的大小

若M=(x^a+2x^2+1)(x^4-2x^2+1),N=(x^4+x^2+1)(x^4-x^2+1)试比较M与N的大小
∵ M=(x^4+2x^2+1)(x^4-2x^2+1),N=(x^4+x^2+1)(x^4-x^2+1) ∴ M/N=[(x^4+2x^2+1)(x^4-2x^2+1)] / [(x^4+x^2+1)(x^4-x^2+1)] ={(x^4+x^2+1)(x^2-1)^2 + [X(X^2-1)]^2 } / [(x^4+x^2+1)(x^4-x^2+1)] =(x^4+x^2+1)(x^2-1)^2 / [(x^4+x^2+1)(x^4-x^2+1)] + [X(X^2-1)]^2 / [(x^4+x^2+1)(x^4-x^2+1)] >(x^4+x^2+1)(x^2-1)^2 / [(x^4+x^2+1)(x^4-x^2+1)] =(x^2-1)^2 / (x^4-x^2+1) =1 - x^2 / (x^4-x^2+1) >1 ∴ M > N