若F1,F2分别是椭圆x^2/a^2+y^2/b^2=1的左右焦点,P是椭圆上的一个动点,且|PF1|+|PF2|=4|F1F2|=2√3,1.求出椭圆的方程.2.是否存在过定点N(0,2)的直线l与椭圆交于不同的两点A,B,使向量OA垂直向量OB(O为坐

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:18:38

若F1,F2分别是椭圆x^2/a^2+y^2/b^2=1的左右焦点,P是椭圆上的一个动点,且|PF1|+|PF2|=4|F1F2|=2√3,1.求出椭圆的方程.2.是否存在过定点N(0,2)的直线l与椭圆交于不同的两点A,B,使向量OA垂直向量OB(O为坐
若F1,F2分别是椭圆x^2/a^2+y^2/b^2=1的左右焦点,P是椭圆上的一个动点,且|PF1|+|PF2|=4
|F1F2|=2√3,
1.求出椭圆的方程.
2.是否存在过定点N(0,2)的直线l与椭圆交于不同的两点A,B,使向量OA垂直向量OB(O为坐标原点)?若存在,求斜率K;若不存在,说明理由.

若F1,F2分别是椭圆x^2/a^2+y^2/b^2=1的左右焦点,P是椭圆上的一个动点,且|PF1|+|PF2|=4|F1F2|=2√3,1.求出椭圆的方程.2.是否存在过定点N(0,2)的直线l与椭圆交于不同的两点A,B,使向量OA垂直向量OB(O为坐
若F1,F2分别是椭圆x^2/a^2+y^2/b^2=1的左右焦点,P是椭圆上的一个动点,且|PF1|+|PF2|=4,|F1F2|=2√3,
1.求出椭圆的方程.
2.是否存在过定点N(0,2)的直线l与椭圆交于不同的两点A,B,使向量OA垂直向量OB(O为坐标原点)?若存在,求斜率K;若不存在,说明理由.
根据题意
2a=4,a=2
2c=2√3,c=√3
b²=a²-c²=4-3=1
椭圆方程:x²/4+y²=1
(2)设过点N的直线y=kx+2
代入椭圆方程x²/4+y²=1即x²+4y²=4
整理:(4k²+1)x²+16kx+12=0
韦达定理:x1+x2=-16k/(4k²+1),x1*x2=12/(4k²+1)
y1y2=(kx1+2)(kx2+2)=k²x1x2+2k(x1+x2)+4
如果k存在且使向量OA垂直向量OB,即y1/x1*y2/x2=-1则
x1x2+y1y2=0
x1x2+k²x1x2+2k(x1+x2)+4=0
12/(4k²+1)+12k²/(4k²+1)-32k²/(4k²+1)+4=0
12+12k²-32k²+16k²+4=0
k²=4
k=±2
所以存在k,符合题意,此时k=±2

设F1,F2分别是椭圆x^2+y^2/b^2=1(0 设 F1 F2,分别是椭圆E:x^2 +y^2/b^2 =1(0 设F1,F2分别是椭圆x^2+y^2/b^2=1(0 已知椭圆x^2/a^2+y^2/b^2=1,F1,F2分别是椭圆的左右焦点,当椭圆上存在...已知椭圆x^2/a^2+y^2/b^2=1,F1,F2分别是椭圆的左右焦点,当椭圆上存在点P使三角形pF1F2的三边构成等差数列求离心率的范围 已知椭圆x^2/a^2+y^2/b^2=1,F1,F2分别是椭圆的左右焦点,当椭圆上存在...已知椭圆x^2/a^2+y^2/b^2=1,F1,F2分别是椭圆的左右焦点,当椭圆上存在点P使三角形pF1F2的三边构成等差数列求离心率的范围 椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左,右顶点分别是A,B,左右焦点分别是F1,F2,若AF1,F1F2,F1B 成等比数列,则离心率为 椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左,右顶点分别是A,B,左右焦点分别是F1,F2,若AF1,F1F2,F1B 成等比数列,则离心率为 已知椭圆X^2/45+y^2/20=1的焦点分别是F1、F2,过中心O作直线与椭圆相交于A、B两点,若要使三角形ABF1的面积?已知椭圆X^2/45+y^2/20=1的焦点分别是F1、F2,过中心O作直线与椭圆相交于A、B两点,若要使三 F1.F2分别是椭圆x平方/a平方+y平方/b平方=1的左右焦点.右焦点到上顶点距离为2,若a平方=√6c,求椭圆方程. 设F1,F2分别是椭圆E:X^2 Y^2/b^2=1的左右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,BF2|成等差设F1,F2分别是椭圆E:X^2+ Y^2/b^2=1(0 设f1,f2分别是椭圆EX*2+y*2/b*2=1(0 设F1,F2分别是椭圆x^2+y^2=1的左,右焦点,A是该椭圆与Y轴负半轴的交点,在椭圆上求点P.使得/PF1/,/PA/,/PF2/成等差数列. 若F1,F2分别是椭圆x^2/a^2+y^2/b^2=1的左右焦点,P是以F1,F2为直径的圆与椭圆的一交点,且∠PF1F2=5∠PF2F1求该椭圆的离心率 )已知椭圆x^2/a^2+y^2/b^=1(a>b>0)的左,右焦点分别为F1,F2.已知椭圆x^2/a^2+y^2/b^=1(a>b>0)的左,右焦点分别为F1,F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.(1)求椭圆的方程(2)若C,D分别是椭圆 已知F1、F2分别是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左、右两个焦点,右焦点F2(c,0)到上顶点的距离为2,a^2 椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1,F2,过F2作倾斜角120度的直线与椭圆的一个焦点M,若MF1垂直于x轴,则椭圆的离心率为 如图,已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),F1,F2分别是椭圆的左右焦点,A为椭圆上顶点,直线AF2交椭圆于另一点B.若向量AF2=2向量F2B,向量AF1*向量AB=2分之3,求椭圆方程 设F1和F2分别是椭圆3x^2+4y^2-12=0的两个焦点.设F1和F2分别是椭圆3x^2+4y^2-12=0的两个焦点,过点F1作倾斜角45°的直线交椭圆于A、B两点,求三角形F2AB的面积.从k=tan45°=1的角度来解这道题y=y0=k(x-x0)y-0=1*(