近世代数问题:整数集上的加法,不是Sigma代数?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:38:09

近世代数问题:整数集上的加法,不是Sigma代数?
近世代数问题:整数集上的加法,不是Sigma代数?

近世代数问题:整数集上的加法,不是Sigma代数?
不是

近世代数问题:整数集上的加法,不是Sigma代数? 近世代数问题:正整数集关于加法是不是幺半群?幺半群就是有单位元吧,1不满足吗?1*z=z.还是没有完全理解群(集合+代数运算)的概念,..... 近世代数问题第二题? 近世代数中的一个问题:全体整数的集合对于普通减法来说是不是一个群?我才疏学浅,不知自己的判断对不对请各位大虾赐教.我认为应该不是,不知是否因其单位元无法确定的缘故? 近世代数的一道题 近世代数:为什么整数集Z是环,而不是域?Z里面的元素都可逆啊. 近世代数证明题 证明:数集Z[i]={a+bi|a.Z} 关于数的加法与乘法构成一个有单位元的交换环. 近世代数 环的证明题:近世代数证明题:若R是关于+(加法)和X(乘法)的环,其单位元为1,零元为0,那么试证明S也是环,在S上的加法定义为:a#b = a+b+1 ;乘法定义为a*b=aXb+bXa在证明 S上的#和*满 近世代数问题: 能否举例子,一个群是半群但不是幺半群?如题,谢谢! 近世代数陪集问题:(12)(13)=?,(132)(123)=?,(13)(12)=?不好意思,本人刚看近世代数,看不懂!给讲解的详细点,重要的是过程,怎么算的! 关于近世代数的一个问题同态满射与同构映射的区别 关于近世代数与高代的问题,我们知道,在无限域上的n维向量空间中,对于任意正数m 近世代数 关于环的问题:Q[X] Z[(-1)^1/2]呢? 高等近世代数和抽象代数的区别除了高等近世代数,还有中等吗 近世代数题证明Q(根号2 )={a+b根号2| a,b是有理数}对普通实数的加法和乘法作成一个域 近世代数的一个问题:群的运算加法,如何理解阿贝尔群 Z4 = Z/4Z (也就是集合 { 0,1,2,3 } 带有加法模 4,和它的子群 { 0,2 }.商群 Z4 / { 0,2 } 是 { { 0,2 },{ 1,3 } }.这是带有单位元 { 0,2 } 的群,群运算如 { 0 近世代数包括哪些方面? 近世代数问题:同态和同构的本质区别是什么?能否举一个比较具体的例子?......................