定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性, 证明:利用f(定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性,证明:利用f(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 04:19:19
定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性, 证明:利用f(定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性,证明:利用f(x)
定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性, 证明:利用f(
定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性,
证明:利用f(x)的单调性证明不等式:f(2x-1)+f(1-x)
定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性, 证明:利用f(定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性,证明:利用f(x)
令x=0,y=0,得:
f(0-0)=f(0)-f(0)
即f(0)=0…………(1)
单独令x=0得:
f(0-y)=f(0)-f(y)
f(-y)=-f(y)…………(2)
根据以上两点得出:f(x)是奇函数.
设x>y>0,则:f(x-y)=f(x)-f(y)中
因为x-y>0
又因为当x>0,f(x)>0
所以f(x-y)>0
即f(x)-f(y)>0
因为x>y>0,f(x)>f(y)
所以在x>0上是单调递增函数.
又因为f(x)是奇函数,所以f(x)在R上是单调递增函数.
定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性, 证明:利用f(定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性,证明:利用f(x)
已知定义在R上的函数f(x)满足f(1)=2,f'(x)
已知定义在R上的函数f(x)满足f(1)=2,f'(x)
定义在R上的函数f(x)是增函数,则满足f(x)
已知定义在R上的函数f(x)满足当x>0时,f(x)
已知定义在R上的函数f(x)满足当x>0时,f(x)
定义在R上的函数y=f(x),满足f(3-x)=f(x),f'(x)
已知定义在R上的可导函数f(x),满足f'(x)
定义在R上的函数满足f(x)-f(x-5)=0,当-1
知定义在R上的可导函数f(x),满足f'(x)
已知定义在R上的可导函数f(x),满足f'(x)
已知定义在R上的可导函数f(x),满足f'(x)
定义在R上的函数满足f(-x)=-f(x+2)对称中心是什么
定义在R上的函数f(x)满足:f(-x)+f(x)=x^2,当x
定义在R上的函数f(x)满足:f(-x)+f(x)=x^2,当x
已知定义在R上的可导函数f(x)的导函数为f'(x),满足f'(x)
已知定义在实数集R上的函数f(x)满足f(1)=1,且f(x)的导数f'(x)在R上恒有f'(x)
已知定义在实数集R上的函数f(x)满足f(1)=2,且f(x)的导数f'(x)在R上恒有f'(x)