请帮忙!用数学归纳法证明二项式定理
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:56:59
请帮忙!用数学归纳法证明二项式定理
请帮忙!用数学归纳法证明二项式定理
请帮忙!用数学归纳法证明二项式定理
希望对你有用
课题:二项式定理
授课教师:丁蜀高级中学汤文兵
教 学 目 的
1,通过"杨辉三角"的教学进行爱国主义教育.
2,遵循认识规律:从特殊到一般,从具体到抽象,从杨辉三角到二项式定理, 培养学生的概括能力和严瑾的逻辑推能力.
3,掌握二项式定理,并能灵活运用通项公式解决问题.
教学重点难点
重点:1,杨辉三角及应用.2,二项式定理
难点:二项式定理的证明.
教 学 模 式
讲解研讨法
教学过程
教学方法
引入
在初中时已经学过二项式的平方,立方的展开式,即(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b +3ab2+b3
那么(a+b)3=a3+3a2b+3ab2+b3 那么(a+b)4,(a+b)5,…(a+b)n(n∈N)的展开式又是什么呢 这就是本节要研究和学习的问题.
讲解为主
概念分析
1,杨辉三角
(1)杨辉三角的引出
写出(a+b)n的展开式关键在于确定每一项的系数.(由于二项展开式的每一项系数都是一些抽象听组合数,所以我们可采用从具体到一般的规律进行教学)
提问二项式(a+b)1, (a+b)2, (a+b)3, (a+b)4, (a+b)5的展开式,并根据学生的回答,将展开式的系统列成下表:
(a+b)1…………………………. 1 1
(a+b)2…………………………. .1 2 1
(a+b)3……………………… . 1 3 3 1
(a+b)4…………………… . .1 4 6 4 1
(a+b)5………………… . .1 5 10 10 5 1
(2)杨辉三角的结构规律
启发引导学生观察表格中每个数的特征及其关系,归纳出表的结构规律:
左右两边斜行各数都是1:
②其余各数都等于它肩上的两个数字的和.
(3)利用杨辉三角进行爱国主义教育
我国南宋数学家杨辉在1261年所著《详解九章算法》一书里附有如下一幅图:
左积 右隅
本积 一
商除 一 一
平方 一 二 一
立方 一 三 三 一
三乘 一 四 六 四 一
四乘 一 五 十 十 五 一
五乘 一 六 十五 二十 十五 六 一
图后附有"增乘方求廉草"说明图中各数的求法.贾宪1200年用此术,可见我国这一幅"乘方求廉"的图至迟在1200年左右已经出现了,比欧洲巴斯卡(1623-1662)早了400年.杨辉一生创造出了一毓世界性的数学成果且长期居于先进地位.我们华夏古国是个文明古国,具有辉煌的历史.更值得自豪的是我们炎黄始祖首创十进制位值记数,领先世界数千年….用这些事实激发学生的民族自豪感.明确为振兴中华而努力学习的目的,立志为实现"九五"计划和2010年远景目标而奋斗.
(4)杨辉三角的应用
[例]展开(1+)4
2,二项式定理
(1)观察杨辉三角,猜想二项式定理
既然表中除1以外的每个数都等于它肩上两个数的和,如将第1行的1,1用组合数C01,C11表示,那么第2 行的中间一数应为C01+ C11= C12,引导学生利用组合的性质C0n=Cnn=1, Cmn+Cm-1n= Cmn+1
将杨辉三角中每个数转化成组合数形式:
归纳猜想:(a十b)n展开式的系数是,…,于是
(a十b)n=C0n an十C1n an-1十…十an-rbr十…十Cnn bn
(2)概念:这个公式叫二项式定理,右边的多项式叫做(a十b)n的二项展开式,
(r=0,1,……n)叫做二项式系数,叫做二项展开式的通项,记作Tr+1=.
(3) (a十b)n展开式的特点
二项式定理(a十b)n=C0n an十C1n an-1十…十an-rbr十…十Cnn bn的特点是:
(1)项数:共有n十1项;
(2)系数:第r十1项的系数是 (r=O,l,2,…,n);
(3)指数:a的指数是从n开始,逐渐减1按降幂排列到0;b的指数是从0开始,逐渐加1按升幂排列到n;
(4)项的次数:各项次数和都是n;
(4)注意事项(通项公式的应用)
二项展开式的通项Tr+1=, (r=0,l,2,…,n)是(a十b)n展开式的第r十l项,而不是第r项.其中还要注意下面两点:
第一点是a,b的位置不能颠倒,即(b十a)n的展开式第r十1项,不是,而应为;
第二点是(a一b)n的展开式第r十1项为=(-1)r.
(2)注意区别二项式系数与指定项的系数二者异同
在(a十b)n的展开式中,系数(r=0,l,…,n)是一组仅与二项式的次数n有关的n十1个组合数,而与a,b无关,因此称为二项式系数.而(a十b)n的展开式中指定项系数与a,b是有联系的.例如:(1十x)n的展开式第r十1项的系数为,而(1十2x)n的展开式第r十l项的系数为2r,(2十x)n的展开式第r十1项的系数为
重在启发,引导学生归纳
例题讲解
展开(1+1)4.
求(2a+b)5的展开式的
第四项;
(2)第四项的二项式系数;
(3)第四项的系数.
简解:(1)T3+1==10·4a2b3=40a2b3
(2) =10
(3) 40
强调:展开式中某项的系数与二项式系数是不同的概念.
【例3】求(x-)9的展开式中x3的系数.
分析:抓住通项公式.
【例4】 求(一)15的展开式中常数项.
分析 (一)15的展开式中的常数项,就是展开式中x的指数为零的项.
解 设(一)15展开式中常数项为第r十1项,则Tr+1=
=,令 解得r=6,从而可知不含x的项是展开式中的第7项.
所以展开式中常数项为T7=(一1)6=5005.
评注 根据已知条件求二项展开式中特定的项的问题,往往先根据己知条件或通项公式,把问题转化为求方程的解,最后再代人通项公式求出问题的解.
师生共同完成
课堂练习
1. 写出(p+q)7的展开式.
2. 求(x3+2x)7的展开式的第4项的二项式系数,并求第4项的系数.
3,求(x-)9的展开式中的常数项.
板演
小结与作业
课堂小结
杨辉是我国古代数学家的杰出代表,是我们炎黄子孙的骄傲.利用杨辉三角可以展开(a+b)n (n∈N,n不太大时)
杨辉三角(组合形式)从上一行推出下一行时用到了组合数的性质Cmn+Cm-1n=Cnn+1,故用数学归纳法证明二项式定理从n=k到n=k+1时,关键也是用这个性质.
二项展开式的特征.
本课作业
1.的展开式中,第五项是……………………………………( )
A. B. C. D.
2.的展开式中,不含a的项是第…………………………( )项
A.7 B.8 C.9 D.6
本课教育评注(课堂设计理念,实际教学效果及改进设想)
很尴尬
这个指数以及组合里的m,n不好打,将就着,你能不能看懂
当n=1时,左边=(a+b)1=a+b
右边=C01a+C11b=a+b;左边=右边
假设当n=k时,等式成立,即(a+b)n=C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn成立;
则当n=k+1时, (a+b)(n+1)=(a+b)n*(a+b)=[C0n...
全部展开
这个指数以及组合里的m,n不好打,将就着,你能不能看懂
当n=1时,左边=(a+b)1=a+b
右边=C01a+C11b=a+b;左边=右边
假设当n=k时,等式成立,即(a+b)n=C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn成立;
则当n=k+1时, (a+b)(n+1)=(a+b)n*(a+b)=[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*(a+b)=[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*a+[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*b=[C0na(n+1)+C1n anb十…十Crn a(n-r+1)br十…十Cnn abn]+[C0nanb+C1n a(n-1)b2十…十Crn a(n-r)b(r+1)十…十Cnn b(n+1)]=C0na(n+1)+(C0n+C1n)anb十…十(C(r-1)n+Crn) a(n-r+1)br十…十(C(n-1)n+Cnn)abn+Cnn b(n+1)]=C0(n+1)a(n+1)+C1(n+1)anb+C2(n+1)a(n-1)b2+…+Cr(n+1) a(n-r+1)br+…+C(n+1)(n+1) b(n+1)
∴当n=k+1时,等式也成立;
所以对于任意正整数,等式都成立
收起
我把登陆密码忘了,对不起,不能及时处理,本来我是支持xiaoyouyou163,但没办法打开页面,还望原谅.