求sin(2x-π/6)在[0,2π/3]上的单调递增区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:51:39
求sin(2x-π/6)在[0,2π/3]上的单调递增区间
求sin(2x-π/6)在[0,2π/3]上的单调递增区间
求sin(2x-π/6)在[0,2π/3]上的单调递增区间
y=sinx单调增区间[2kπ-π/2,2kπ+π/2](k∈z)
所以sin(2x-π/6)的单调递增区间为
2kπ-π/2≤2x-π/6≤2kπ+π/2,k∈Z
-π/6+kπ≤x≤π/3+kπ,k∈Z
令k=0则有-π/6≤x≤π/3
令k=1则有5π/6≤x≤4π/3
所以sin(2x-π/6)在[0,2π/3]上的单调递增区间为[0,π/3]
求sin(2x-π/6)在[0,2π/3]上的单调递增区间
已知sin(x+π/6)=1/3,求sin(5π/6-x)+sin^2(π/3-x)
已知sin(x+π/6)=1/4,求sin(5π/6-x)+sin^2(π/3-x)
已知F(X)=根号3COS^2 X+SIN XCOS X-2SIN X*SIN(X-π/6),求F(X)的最大值
sin^2(π/3-x)+sin^2(π/6+x)
已知-π/2<x<0,sin x+cos x=1/5求sin 2x+2 sin
求函数y=sin(2x-π/6)-1在【0,π/4】的值域
x范围在0到π/2 求f(x)=sin(π/6-x)-cosx的值域
sin平方x-sinxcosx-2cos平方x 求sin(x-π/3)X为锐角 sin平方x-sinxcosx-2cos平方x=0 求sin(x-π/3)
已知函数f(x)=-√3sin^2x+sinxcosx 求在X∈[0,π/2]的值域
已知sin(x+π/3)=1/4,求sin(2π/3-x)+cos²(π/6-x)
c=2sin(2x+π/6)-1在(0,π/3]上有解,求c的取值范围
f(x)=根号3sin(2x-π/6)+2sin^2(x-π/12)求单调递增区间
求极限 sin(x-π/3)/1-cosx 在x趋向π/2的极限
求下列函数周期 y=3sin(x/4) x属于Ry=2sin(2x-π/6)
求sin(x)与cos(x)在【0,2π】内交点.
f(x)=2sin(π-x )sin(π/2-x ) 求f(x)的最小正周期 求f(x)在区间[-π/6,π/2]上的最大值和最小值f(x)=2sin(π-x )sin(π/2-x )求f(x)的最小正周期求f(x)在区间[-π/6,π/2]上的最大值和最小值
求y=sin(2x+π/6)x∈(0,π/3)的值域