可分离变量的微分方程积分后化简和代入条件的问题.这种方程,积分后不化简,直接代入初始条件,结果求出来的是两个函数.化简以后再代入,就变成一个函数了.难道化简的过程不是等价的吗?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:25:28
可分离变量的微分方程积分后化简和代入条件的问题.这种方程,积分后不化简,直接代入初始条件,结果求出来的是两个函数.化简以后再代入,就变成一个函数了.难道化简的过程不是等价的吗?
可分离变量的微分方程积分后化简和代入条件的问题.
这种方程,积分后不化简,直接代入初始条件,结果求出来的是两个函数.化简以后再代入,就变成一个函数了.难道化简的过程不是等价的吗?
举例来说,y'y+x=0 x=1时y=1 如果积分以后不消去哪些In,绝对值什么的,最终结果就是y=+-1/x 如果先化简成xy=C在代入条件,就得到y=1/x 为什么会有这样的差别存在?
可分离变量的微分方程积分后化简和代入条件的问题.这种方程,积分后不化简,直接代入初始条件,结果求出来的是两个函数.化简以后再代入,就变成一个函数了.难道化简的过程不是等价的吗?
按广义积分求出来的 是通解,通解可以有无数个.
在通解的基础上带入特定的XY值后是定解.定解的个数有限.
你举的例子好象不对
比如 y'+y=0
通解是 y=C e^(-x) ,C不等于0
这样的情况下C可以是任意数,即通解有无数个.
在给出 X=0,Y=2的情况下,C=2
则y=2e^(-x),定解唯一.
可分离变量的微分方程积分后化简和代入条件的问题.这种方程,积分后不化简,直接代入初始条件,结果求出来的是两个函数.化简以后再代入,就变成一个函数了.难道化简的过程不是等价的吗?
可分离变量的微分方程
可分离变量的微分方程,求解
求微分方程通解,可分离变量的微分方程
如题,可分离变量的微分方程
高数可分离变量的微分方程,
变量可分离微分方程问题.这道题不知道为什么右边积分是这样字的,我很感激.
微分方程可分离变量的条件如题 写清楚点 我会再加分的
可分离变量的微分方程问题.y'=1+y^2属于可分离变量的微分方程吧?
求微分方程通解,可分离变量
请教1题简单的可分离变量的微分方程习题Cos ydx+(1+e^(-x))sin ydy=0,(x=0,y|=π/4)解:分离变量,得,e^x /(1+e^x)dx=-tan ydy两端积分,得ln(1+e^x)=ln|cos y|+ln C即1+e^x=Ccosy代入初始条件:x=0,y=π/4,得C=2^(3/2),于是 1
微分方程 可分离变量方程两边同时对不同积分变量的原理是不是微分形式不变形在积分中的对应的应用啊?
什么是可分离变量的微分方程请通俗一点的讲讲
可分离变量的y'=-x/y微分方程的通解
如图,这个可分离变量的微分方程怎么解
可分离变量的微分方程:y'-xy^2=2xy ..
(高数)利用可分离变量的微分方程解题
可分离变量的微分方程.第二大题,第一小题