详细说明剪刀中的杠杆原理!如果觉得剪刀不好说,也可以选其他事物上的杠杆原理
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:03:17
详细说明剪刀中的杠杆原理!如果觉得剪刀不好说,也可以选其他事物上的杠杆原理
详细说明剪刀中的杠杆原理!
如果觉得剪刀不好说,也可以选其他事物上的杠杆原理
详细说明剪刀中的杠杆原理!如果觉得剪刀不好说,也可以选其他事物上的杠杆原理
亦称“杠杆平衡条件”.要使杠杆平衡,作用在杠杆上的两个力(动力和阻力)的大小跟它们的力臂或反比.动力×动力臂=阻力×阻力臂,用代数式表示为F• L1=W•L2.式中,F表示动力,L1表示动力臂,W表示阻力,L2表示阻力臂.从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一.在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆.因此使用杠杆可以省力,也可以省距离.但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力.要想又省力而又少移动距离,是不可能实现的.
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比.阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造.据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅般顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久.
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的.
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理.他首先把杠杆实际应用中的一些经验知识当作"不证自明的公理",然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理.这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变.相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替;似图形的重心以相似的方式分布……正是从这些公理出发,在"重心"理论的基础上,阿基米德又发现了杠杆原理,即"二重物平衡时,它们离支点的距离与重量成反比."
阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进了一系列的发明创造.据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅船顺利下水.在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久.
这里还要顺便提及的是,在我国历史上也早有关于杠杆的记载.战国时代的墨家曾经总结过这方面的规律,在《墨经》中就有两条专门记载杠杆原理的.这两条对杠杆的平衡说得很全面.里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的.这样的记载,在世界物理学史上也是非常有价值的
你找出剪刀中的阻力臂,动力臂,阻力,支点就行