高数代换问题,微分方程,设y=x/lnx是微分方程y'=y/x+φ(x/y)的解,则φ(x/y)的表达式为?将y=x/lnx带入方程y'=y/x+φ(x/y)得:1/lnx-1/(lnx)^2=1/lnx+φ(lnx)得:φ(lnx)=-1/(lnx)^2,则φ(x/y)=-y^2/x^2.我觉得他先把φ(x/y)带

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:48:53

高数代换问题,微分方程,设y=x/lnx是微分方程y'=y/x+φ(x/y)的解,则φ(x/y)的表达式为?将y=x/lnx带入方程y'=y/x+φ(x/y)得:1/lnx-1/(lnx)^2=1/lnx+φ(lnx)得:φ(lnx)=-1/(lnx)^2,则φ(x/y)=-y^2/x^2.我觉得他先把φ(x/y)带
高数代换问题,微分方程,设y=x/lnx是微分方程y'=y/x+φ(x/y)的解,则φ(x/y)的表达式为?
将y=x/lnx带入方程y'=y/x+φ(x/y)得:1/lnx-1/(lnx)^2=1/lnx+φ(lnx)得:φ(lnx)=-1/(lnx)^2,则φ(x/y)=-y^2/x^2.
我觉得他先把φ(x/y)带换成φ(lnx),然后在设成φ(x/y),是不是绕弯了?
为什么不直接算φ(x/y)?比如:1/lnx-1/(lnx)^2=1/lnx+φ(x/y),得φ(x/y)=-1/(lnx)^2
我知道这样算不对,但是不知道为什么不对?为什么要划来划去多此一举呢?

高数代换问题,微分方程,设y=x/lnx是微分方程y'=y/x+φ(x/y)的解,则φ(x/y)的表达式为?将y=x/lnx带入方程y'=y/x+φ(x/y)得:1/lnx-1/(lnx)^2=1/lnx+φ(lnx)得:φ(lnx)=-1/(lnx)^2,则φ(x/y)=-y^2/x^2.我觉得他先把φ(x/y)带
因为你把y代进去的时候,φ(x/y)的表达式里和y有关的部分也被代换了,所以-1/(lnx)^2其实同时是有x和y(即x/lnx)的部分的,要把y代进去才能搞清楚关系.

φ(x/y)其实是单变量函数,你算的答案忽略了还有一个隐函数的条件。就是题目的

高数代换问题,微分方程,设y=x/lnx是微分方程y'=y/x+φ(x/y)的解,则φ(x/y)的表达式为?将y=x/lnx带入方程y'=y/x+φ(x/y)得:1/lnx-1/(lnx)^2=1/lnx+φ(lnx)得:φ(lnx)=-1/(lnx)^2,则φ(x/y)=-y^2/x^2.我觉得他先把φ(x/y)带 高数求导问题:y=(lnx)^x 微分方程问题,变量代换,化为可分离变量方程,求通解,xy'+y=y(lnx+lny);过程详细点,d(t/x)=(1/x)dt+(-t/x^2)dx这步怎么做的,看不懂, 求微分方程通解xy'lnx+y=x(lnx+1) 高数微分方程问题:设y1,y2,y3是微分方程y''+p(x)y'+q(x)y=f(x)的三个不同的解,且(y1-y2)/(y2-y3)≠常数则微分方程的通解为?答案是y=c1(y1-y2)+c2(y2-y3)+y1老师有讲过程,老师说y1-y2和y2-y3都是该微分方程所 高数,小量代换问题 高数微分方程问题 高数微分方程问题, 求微分方程的解:y'-2y/x=lnx; 高数微分方程y''=y^(-1/2)求通解问题(设y'=p,y''=p*dp/dy)降阶求解, 高数微分方程问题:函数y(x)满足方程y(x)=∫(0x)y(t)dt+e^x,求y(x) 高数问题微分方程求微分方程dy÷dx+2xy=4x的通解, 解微分方程 y lny dx-x lnx dy=0 高数微分,前面说y=x时,dx可以代换△x,但对于任意y,为什么dx还可以代换△x 微积分 微分方程问题.,求y'=(y+x lnx)/x的通解,请用公式方法解答.不要用换元方法.y'=(y/x)+lnx.这里P(x)=-1/x,Q(x)=lnx 设y=x/lnx,求y'' 高数微分方程问题,会做的有追加分数yy''=y'^2+y'^3答案是y+C1ln|y|=x+C2,x=C, 高数微分方程问题!解微分方程:dy/dx=(x+y)的平方.dy/dx-e的(x-y)次方+e的x次方=0dy/dx=分子是3x+e^y,分母是x的平方.