设p为等轴双曲线x^2-y^2=1上的一点,F1,F2是两个焦点,证明lpfl*lpf2l=lopl^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:50:10
设p为等轴双曲线x^2-y^2=1上的一点,F1,F2是两个焦点,证明lpfl*lpf2l=lopl^2
设p为等轴双曲线x^2-y^2=1上的一点,F1,F2是两个焦点,证明lpfl*lpf2l=lopl^2
设p为等轴双曲线x^2-y^2=1上的一点,F1,F2是两个焦点,证明lpfl*lpf2l=lopl^2
设P(x,y)为双曲线x²-y²=1上任意一点,则有y²=x²-1,
因为F1(-√2,0),F2(√2,0),
所以|PF1|²=(x+√2)²+y²=x²+2√2x+2+x²-1=2x²+2√2x+1,
|PF2|²=(x-√2)²+y²=x²-2√2x+2+x²-1=2x²-2√2x+1,
(|PF1||PF2|)²=(2x²+2√2x+1)(2x²-2√2x+1)=(2x²+1)²-(2√2x)²=(2x²-1)²,
即|PF1||PF2|=2x²-1 (x²≥1),
又|OP|²=x²+y²=2x²-1,所以|PF1||PF2|=|OP|².
设p为等轴双曲线x^2-y^2=1上的一点,F1,F2是两个焦点,证明lpfl*lpf2l=lopl^2
请问赵老师一道双曲线的参数方程题,麻烦您帮忙看下~设P为等轴双曲线x^2-y^2=1上的一点,F1和F2为两个焦点,证明:|F1P|·|F2P|=|OP|^2.下面是我的证明过程:设双曲线的参数方程为x=secθ,y=tanθ;已
双曲线的性质及其应用设双曲线的中心在原点,准线平行与X轴,离心率(根号5)/2,且点P(0,5)到此双曲线上的点的最近距离为2,求双曲线的方程.已知双曲线X*X-Y*Y/2=1与点P(1,2),过P点作直线L与双曲线
设F1,F2,是双曲线x^2/4-y^2=1的焦点,点p在双曲线在双曲线上,且角F1DF2=90°,则点p到x轴的距离为?
请问各位一道双曲线的参数方程题,麻烦前辈高人们帮忙看下~问题为:设P为等轴双曲线x^2-y^2=1上的一点,F1和F2为两个焦点,证明:|F1P|·|F2P|=|OP|^2.下面是我的证明过程:设双曲线的参数方程为x=
设P为双曲线 X^2/a^2 一y^2=1 虚轴的一个端点,Q为双曲线上的一个动点, 则 |PQ|的最小值为求步骤清晰
【双曲线标准方程】设双曲线x^2/4-y^2/2=1的两个焦点为F1,F2接下去:点P在双曲线上,若角F1PF2=90°,则P点坐标为多少?
设P为双曲线X^2-Y^2=1上的一点,F1,F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为(...设P为双曲线X^2-Y^2=1上的一点,F1,F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为(
等轴双曲线x^2-y^2=1上一点P与两焦点F1、F2的连线相互垂直,则△PF1F2的面积为多少?
设p是双曲线(16分之x^2)-(9分之y^2)=1上一点,p到双曲线一个焦点的距离为10,则p到另一个焦点的距离是多少
设p是双曲线(16分之x^2)-(9分之y^2)=1上一点,p到双曲线一个焦点的距离为10,则p到另一个焦点的距离是多少?详细答案!
1、设双曲线x^2/9-y^2/16=1的右顶点为A,右焦点为F,过点F平行双曲线的一条渐近线的直线与双曲线交于点B,求三角形AFB的面积.2、对称轴都在坐标轴上,等轴双曲线,一个焦点是F1(-6,0)求双曲线方
关于双曲线设F1,F2为双曲线 X^2/4-Y^2=1的两个焦点,点P在双曲线上,且满足向量PF1*PF2=0(即两线垂直),则三角形F1PF2的面积是?
设p为等轴双曲线为x^2-y^2=a^2(a>0)右支上的一点,F1F2是左右焦点,若向量PF1乘以PF2=0,向量PF2=6,求双曲求双曲线方程.
设P为双曲线x²-y²/12=1上的一点,F1,F2为焦点,角F1PF2=π/2,则P到x轴的距离
求设P为双曲线X^2-Y^2上的一点,F1F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为...求设P为双曲线X^2-Y^2上的一点,F1F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为
已知双曲线c以过原点且与圆x^2+y^2-4x+3=0相切的两条直线为渐近线,双曲线C还过椭圆y^2/4+x^2=1的两个焦点,F1,F2是双曲线的两个焦点(1):求双曲线C的方程(2):设P是双曲线C上一点,且
直线y=1/2x+1与双曲线y=k/x交于P,PA⊥x轴,与y轴交与B,PA+AB=6求双曲线方程设直线与双曲线有一交点为C,求S△POC写出一次函数值大于反比例函数值时x的范围