三角形ABC是等边三角形,在BC上取点M,是的BM=1/4BC,在AB上取点N,使得BN=1/4AB,P1,P2,P3依次是AC边上三角形ABC是等边三角形,在BC上取点M,是的BM=1/4BC,在AB上取点N,使得BN=1/4AB,P1,P2,P3一次是AC边上的三个四

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:23:48

三角形ABC是等边三角形,在BC上取点M,是的BM=1/4BC,在AB上取点N,使得BN=1/4AB,P1,P2,P3依次是AC边上三角形ABC是等边三角形,在BC上取点M,是的BM=1/4BC,在AB上取点N,使得BN=1/4AB,P1,P2,P3一次是AC边上的三个四
三角形ABC是等边三角形,在BC上取点M,是的BM=1/4BC,在AB上取点N,使得BN=1/4AB,P1,P2,P3依次是AC边上
三角形ABC是等边三角形,在BC上取点M,是的BM=1/4BC,在AB上取点N,使得BN=1/4AB,P1,P2,P3一次是AC边上的三个四等分点,求∠MP1N+∠MP2N+∠MP3N的度数,并证明.

三角形ABC是等边三角形,在BC上取点M,是的BM=1/4BC,在AB上取点N,使得BN=1/4AB,P1,P2,P3依次是AC边上三角形ABC是等边三角形,在BC上取点M,是的BM=1/4BC,在AB上取点N,使得BN=1/4AB,P1,P2,P3一次是AC边上的三个四
60度
提示,你好好画一下图,用尺量好比例准确后你会发现里面有几个等腰三角形,把3个角挪到一起就看出来了
加油,不要偷懒哦

取BC的中点为D,AB的中点为E,连接DE;
则MN//DE,且MN为四分店,则NP3,MP1与DE共交于一点,即DE中点F
则NP1//MP2推出,∠MP1N与∠P1MP2为内错角,相等
同理∠MP3N与∠P3NP2相等
在三角形MNP2和三角形MNF中
原式=∠P1MP2+∠MP2N+∠P3NP2=180-(∠FMN+∠FNM)=60...

全部展开

取BC的中点为D,AB的中点为E,连接DE;
则MN//DE,且MN为四分店,则NP3,MP1与DE共交于一点,即DE中点F
则NP1//MP2推出,∠MP1N与∠P1MP2为内错角,相等
同理∠MP3N与∠P3NP2相等
在三角形MNP2和三角形MNF中
原式=∠P1MP2+∠MP2N+∠P3NP2=180-(∠FMN+∠FNM)=60

收起

加油!再试一下!

在等边三角形ABC中点P,Q分别在AC,BC上,且AP=CQ,AQ与BP交于点M在BP上取点N,使MN=MQ,连接NQ求证:三角形MNQ是等边三角形. 在三角形ABC中,线段AB,AC的垂直平分线分别交BC于M,N两点,且BM等于MN等于NC 求证,三角形AMN是等边三角形 三角形ABC是等边三角形,在BC上取点M,是的BM=1/4BC,在AB上取点N,使得BN=1/4AB,P1,P2,P3依次是AC边上三角形ABC是等边三角形,在BC上取点M,是的BM=1/4BC,在AB上取点N,使得BN=1/4AB,P1,P2,P3一次是AC边上的三个四 三角形ABC,以AB,AC,BC为边在BC的同侧作等边三角形ABD,等边三角形ACE,等边三角形BCF.说明DAEF是平行四边形 三角形ABC是等边三角形, 三角形ABC是等边三角形 在三角形ABC中P为三角形ABC内任意一点PD⊥BC于DPE⊥AC于EPF⊥AC于FAM⊥BC于M 求AM PD PE PF之间的关系是等边三角形啊 三角形ABC是等边三角形,DE平行BC,试说明三角形ADE是等边三角形. 三角形ABC为等边三角形,M在BC上,N在AC上,BM=CN,求角BQM的大小 三角形abc、三角形bcd都是等边三角形,点E,F分别在AB,DB上,且AE+DF=BC,说明三角形ECF是等边三角形. 三角形abc、三角形bcd都是等边三角形,点E,F分别在AB,DB上,且AE+DF=BC,说明三角形ECF是等边三角形. 三角形ABC是等边三角形,P是射线BC上一点,在射线AC上作点M,使MC=BP,再以MC为边长作等边三角形MNC,求证:AP=AN. 等边三角形ABC D是BC的中点 E在AB上 在三角形ABC内部作等边三角形DEF,连接AF,求证AF=EF 如图三角形ABC是等边三角形,D在AB上,AE平行BC,AE=BD.求证三角形CDE是等边三角形. 【如图,已知在等边三角形ABC中,D是BC边上一点...如图,已知在等边三角形ABC中,D是BC边上一点,三角形DEB为等边三角形,DE的延长线与AB的延长线交于M,AD的延长线与BE的延长线交于N,连接MN,求证三角 在三角形ABC中,AD是BC边上的中线,交BC边与点D,BC=2AC求证:三角形ACD是等边三角形 在三角形ABC中,AD是BC边上的中线,交BC边于点D,BC=2AC 求证:三角形ACD是等边三角形. 一道相似三角形题,在等边三角形ABC中,P是BC上一点,连接AP,做AP的中垂线分别交AB、AC于M、N,求证:三角形MBP相似于三角形PCN.