恒星和行星是如何划分的?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:32:49
恒星和行星是如何划分的?
恒星和行星是如何划分的?
恒星和行星是如何划分的?
恒星由炽热气体组成的,能自己发光的球状或类球状天体(如太阳).
行星
定义
如何定义行星这一概念在天文学上一直是个备受争议的问题.国际天文学联合会大会2006年8月24日通过了“行星”的新定义,这一定义包括以下三点:
1、必须是围绕恒星运转的天体;
2、质量必须足够大,它自身的吸引力必须和自转速度平衡使其呈圆球状;
3、不受到轨道周围其他物体的影响,能够清除其轨道附近的其它物体.
一般来说,行星的直径必须在800公里以上,质量必须在50亿亿吨以上.
什么样的天体才能称其为行星?传统的观点是建立在我们最熟悉的九大行星上,而且已存在了几个世纪。但是随着近五年不断发现一些新的星体,这种观点显然已过时了。
SPACE.com获悉,对“行星”的定义将由世界权威机构重新定义。估计时间可能在十一月中旬。国际天文协会被认为对星体进行分类,事实上,它从未对行星下过定义,因为大家都知道行星是什么。
但是自从1995年以来,不断发现其它恒星周围...
全部展开
什么样的天体才能称其为行星?传统的观点是建立在我们最熟悉的九大行星上,而且已存在了几个世纪。但是随着近五年不断发现一些新的星体,这种观点显然已过时了。
SPACE.com获悉,对“行星”的定义将由世界权威机构重新定义。估计时间可能在十一月中旬。国际天文协会被认为对星体进行分类,事实上,它从未对行星下过定义,因为大家都知道行星是什么。
但是自从1995年以来,不断发现其它恒星周围的巨大行星,以及既不是行星也不是恒星的新的星体,这使得国际天文协会必须将其进行分类。随着近几周发现了一些类似行星的自由漂动的星体,国际天文协会的定义显得尤为重要。
太阳系以外的行星,棕色矮星
自从1995年发现首颗围绕另一颗恒星旋转的行星以来,又发现了50多颗太阳系以外的行星。它们与我们熟悉的行星不同,体积巨大-往往超过木星的许多倍-一些更象另一类星体,棕色矮星。
棕色矮星在1995年被证实存在,它们体积巨大,但不足以促成热核反应形成恒星。这些棕色矮星象行星一样不发光,也可绕恒星运转。尽管这些自由漂动的星体可能是棕色矮星,但没有多少行星的特征,它们比木星大5-15倍,大小范围很类似行星。由于这一系列以前从未探测到的星体,我们对于行星构成和星体质量的观点正在彻底改变。
许多科学家认为,冥王星本不应被称为行星。冥王星的体积比任何其它行星要小许多,而且它距离其它行星绕太阳旋转的轨道平面有一个很明显的角度。冥王星也远离海王星的轨道,研究人员认为它很可能是Kuiper带的一部分,Kuiper带是一个遥远的冰冻岩石区,在1992年被证实存在。
1999年初,国际天文协会试图将冥王星给予双重身份-既是行星也是一个通过海王星轨道的物体,但由于人们的反对而搁置下来。在太阳系中的更小的物体,包括彗星也被称为小行星。而且其它比冥王星体积大的物体很有可能也围绕太阳旋转。
那么课本上的定义是什么?查阅各种文献,你会惊奇地发现根本就没有对行星的定义。
在棕色矮星的存在得到证实以前,人们往往认为分辨行星与恒星是一件非常简单的事情。目前,在阿兰·博斯领导下,一个由13人组成的国际天文协会专家小组正在致力于"行星"的定义工作。这些天文学家最近发现了行星状的自由漂浮物体,这一发现证明,人们以前在定义行星以及恒星方面有些过于乐观了。天文学家认为,在行星与棕色矮星之间尚有3个疑问需要解决,即它们的起源、轨道、及其体积。
如果依据教科书来给行星下定义的话,一般的表述是:在恒星形成后,由其发散出的气体以及固体尘埃所组成的涡旋逐渐形成了行星。我们就是这样解释太阳系的9大行星的形成过程的。
但是,曾经于1975年提出"棕色矮星"这一概念的塔尔特认为,不能单纯从形成过程来定义行星。她建议,在定义行星时还应当考虑行星围绕某个恒星轨道运行这一因素。
问题是,棕色矮星即符合上述的两个"行星"标准。它们经常围绕恒星的轨道运行,这意味着棕色矮星是由气体和固体尘埃形成的。目前人们所争论的焦点在于星体的体积方面。如果棕色矮星的体积比木星的体积大13倍,它内部的压力就足以引起氘的燃烧。但是行星却无法燃烧氘。由此,人们通常会以是否有氘的燃烧来划分恒星与行星的界限。
但是,这样也并不能完全说明问题。对于那些体积小于行星的棕色矮星又该如何解释呢?
恒星之所以成为恒星,是因为它能够通过热核反应将氢转化为氦这一过程发光。而棕色矮星,尽管它们能够通过燃烧氘来进行一种"内核熔融"反应,但是并不能达到恒星所具有的热核反应所需要的熔融过程。但是棕色矮星能够象恒星一样,是另一种无序的气体或尘埃云雾由于重力原因导致该云雾的坍塌而形成。
即使是恒星的定义也有模糊不清的地方
有专家认为,恒星与行星一样,也是由涡旋所形成的。这往往出现在双星体系当中,当一颗恒星形成后,另一颗恒星又通过其剩余物质而产生。再看看有关行星的定义。最近,天文学家为自由漂浮行星的形成过程提出了两种假说。
一种是,这些行星形成于恒星周围的行星系,在其形成后脱离了这一星系。另一种是,这些星体是单独形成的,或者在其行成过程初期没有依附于任何恒星。天文学家认为,无论对于哪种形成方式,目前已有的解释和定义都是不充分的。需要提出新的解释并作出新的定义,以帮助人们更加清楚、准确地在行星与其它星体之间进行区分。
现在,我们可以为行星下这样一个定义:“行星是不能进行内核熔融的球状星体,形成并运行于另一个有时发生内核熔融的星体轨道上。”
看来,人们再也不会那样简单地认为用不着为行星作出任何定义了。
恒星是由炽热气体组成的,本身能发光的天体;行星是围绕恒星运行的,本身不发光的较大的天体;卫星是围绕行星运行本身也不发光的天体,例如,月亮就是地球的卫星。地球是太阳的行星,而太阳则是恒星。
收起
恒星发光,行星不?也许吧
能自己发光的就是恒星
一般认为恒星可以自身依靠核聚变来发光发热,而行星则不能。
简单讲,是按照它们的自身的组成成分,一般组成成分决定运动轨迹,决定内部反应形式,决定构造。
恒星
目录·距离
·星等
·温度
·大小
·质量
·化学组成
·物理特性的变化
·恒星结构
·恒星的演化
恒星由炽热气体组成的,能自己发光的球状或类球状天体。离地球最近的恒星是太阳。目前太阳系内有12颗行星,分别是:水星、金星、地球、火星、谷神星、木星、土星、天王星、海王星、冥王星(由于新定义的出现,冥王星终于被踢出...
全部展开
恒星
目录·距离
·星等
·温度
·大小
·质量
·化学组成
·物理特性的变化
·恒星结构
·恒星的演化
恒星由炽热气体组成的,能自己发光的球状或类球状天体。离地球最近的恒星是太阳。目前太阳系内有12颗行星,分别是:水星、金星、地球、火星、谷神星、木星、土星、天王星、海王星、冥王星(由于新定义的出现,冥王星终于被踢出行星的行列)、原先被认为是冥王星卫星的“卡戎”和一颗暂时编号为“2003UB313”(齐娜)的天体。其次是半人马座比邻星,它发出的光到达地球需要4.22年,晴朗无月的夜晚,在一定的地点一般人用肉眼大约可以看到 3000多颗恒星。借助于望远镜,则可以看到几十万乃至几百万颗以上。估计银河系中的恒星大约有一、二千亿颗。恒星并非不动,只是因为离开我们实在太远,不借助于特殊工具和方法,很难发现它们在天上的位置变化,因此古代人把它们认为是固定不动的星体,叫作恒星。
恒星也有自己的生命史,它们从诞生、成长到衰老,最终走向死亡。它们大小不同,色彩各异,演化的历程也不尽相同。恒星与生命的联系不仅表现在它提供了光和热。实际上构成行星和生命物质的重原子就是在某些恒星生命结束时发生的爆发过程中创造出来的。
距离
测定恒星距离最基本的方法是三角视差法,先测得地球轨道半长径在恒星处的张角(叫作周年视差),再经过简单的运算,即可求出恒星的距离。这是测定距离最直接的方法。但对大多数恒星说来,这个张角太小,无法测准。所以测定恒星距离常使用一些间接的方法,如分光视差法、星团视差法、统计视差法以及由造父变星的周光关系确定视差,等等(见天体的距离)。这些间接的方法都是以三角视差法为基础的。
星等
恒星的亮度常用星等来表示。恒星越亮,星等越小。在地球上测出的星等叫视星等;归算到离地球10秒差距处的星等叫绝对星等。使用对不同波段敏感的检测元件所测得的同一恒星的星等,一般是不相等的。目前最通用的星等系统之一是U(紫外)B(蓝)、V(黄)三色系统(见测光系统'" class=link>测光系统);B和V分别接近照相星等和目视星等。二者之差就是常用的色指数。太阳的V=-26.74等,绝对目视星等M=+4.83等,色指数B-V=0.63,U-B=0.12。由色指数可以确定色温度。
温度
恒星表面的温度一般用有效温度来表示,它等于有相同直径、相同总辐射的绝对黑体的温度。恒星的光谱能量分布与有效温度有关,由此可以定出O、B、A、F、G、K、M等光谱型(也可以叫作温度型)温度相同的恒星,体积越大,总辐射流量(即光度)越大,绝对星等越小。恒星的光度级可以分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ,依次称为超巨星、亮巨星、巨星、亚巨星、主序星(或矮星)、亚矮星、白矮星。太阳的光谱型为G2V,颜色偏黄,有效温度约5,770K。A0V型星的色指数平均为零,温度约10,000K。恒星的表面有效温度由早O型的几万度到晚M型的几千度,差别很大。
大小
恒星的真直径可以根据恒星的视直径(角直径)和距离计算出来。常用的干涉仪或月掩星方法可以测出小到0001的恒星的角直径,更小的恒星不容易测准,加上测量距离的误差,所以恒星的真直径可靠的不多。根据食双星兼分光双星的轨道资料,也可得出某些恒星直径。对有些恒星,也可根据绝对星等和有效温度来推算其真直径。用各种方法求出的不同恒星的直径,有的小到几公里量级,有的大到10公里以上。 恒星的大小相差也很大 , 有的是巨人 , 有的是侏儒。地球的直径约为 13000 千米 , 太阳的直径是地球的 109 倍。巨星是恒星世界中个头最大的 , 它们的直径要比太阳大几十到几百倍。超巨星就更大了 , 红超巨星心宿二 ( 即天揭座α ) 的直径是太阳的 600 倍;红超巨星参宿四 ( 即猎户座α ) 的直径是太阳的 900倍 , 假如它处在太阳的位置上 , 那么它的大小几乎能把木星也包进去。它们还不算最大的 , 仙王座 VV 是一对双星 , 它的主星 A 的直径是太阳的 1600 倍;HR237 直径为太阳的 1800倍。还有一颗叫做柱一的双星 , 其伴星比主星还大 , 直径是太阳的 2000-3000 倍。这些巨星和超巨星都是恒星世界中的巨人。
看完了恒星世界中的巨人,我们再来看看它们当中的侏儒。在恒星世界当中,太阳的大小属中等,比太阳小的恒星也有很多,其中最突出的要数白矮星和中子星了。白矮星的直径只有几千千米,和地球差不多,中子星就更小了,它们的直径只有 20 千米左右,白矮星和中子星都是恒星世界中的侏儒。我们知道,一个球体的体积与半径的立方成正比。如果拿体积来比较的话,上面提到的柱一就要比太阳大九十多亿倍,而中子星就要比太阳小几百万亿倍。由此可见, 巨人与侏儒的差别有多么悬殊。
质量
只有特殊的双星系统才能测出质量来,一般恒星的质量只能根据质光关系等方法进行估算。已测出的恒星质量大约介于太阳质量的百分之几到120倍之间,但大多数恒星的质量在0.1~10个太阳质量之间恒星的密度可以根据直径和质量求出,密度的量级大约介于10克/厘米(红超巨星)到 10~10克/厘米(中子星)之间。
恒星表面的大气压和电子压可通过光谱分析来确定。元素的中性与电离谱线的强度比,不仅同温度和元素的丰度有关,也同电子压力密切相关。电子压与气体压之间存在着固定的关系,二者都取决于恒星表面的重力加速度,因而同恒星的光度也有密切的关系(见恒星大气理论)。
根据恒星光谱中谱线的塞曼分裂(见塞曼效应)或一定波段内连续谱的圆偏振情况,可以测定恒星的磁场。太阳表面的普遍磁场很弱,仅约1~2高斯,有些恒星的磁场则很强,能达数万高斯。白矮星和中子星具有更强的磁场。
化学组成
与在地面实验室进行光谱分析一样,我们对恒星的光谱也可以进行分析,借以确定恒星大气中形成各种谱线的元素的含量,当然情况要比地面上一般光谱分析复杂得多。多年来的实测结果表明,正常恒星大气的化学组成与太阳大气差不多。按质量计算,氢最多,氦次之,其余按含量依次大致是氧、碳、氮、氖、硅、镁、铁、硫等。但也有一部分恒星大气的化学组成与太阳大气不同,例如沃尔夫-拉叶星,就有含碳丰富和含氮丰富之分(即有碳序和氮序之分)在金属线星和A型特殊星中,若干金属元素和超铀元素的谱线显得特别强。但是,这能否归结为某些元素含量较多,还是一个问题。
理论分析表明,在演化过程中,恒星内部的化学组成会随着热核反应过程的改变而逐渐改变,重元素的含量会越来越多,然而恒星大气中的化学组成一般却是变化较小的。
物理特性的变化
观测发现,有些恒星的光度、光谱和磁场等物理特性都随时间的推移发生周期的、半规则的或无规则的变化。这种恒星叫作变星。变星分为两大类:一类是由于几个天体间的几何位置发生变化或恒星自身的几何形状特殊等原因而造成的几何变星;一类是由于恒星自身内部的物理过程而造成的物理变星。
几何变星中,最为人们熟悉的是两个恒星互相绕转(有时还有气环或气盘参与)因而发生变光现象的食变星(即食双星)。根据光强度随时间改变的“光变曲线”,可将它们分为大陵五型、天琴座β(渐台二)型和大熊座W型三种几何变星中还包括椭球变星(因自身为椭球形,亮度的变化是由于自转时观测者所见发光面积的变化而造成的)、星云变星(位于星云之中或之后的一些恒星,因星云移动,吸光率改变而形成亮度变化)等。可用倾斜转子模型解释的磁变星,也应归入几何变星之列。
物理变星,按变光的物理机制,主要分为脉动变星和爆发变星两类。脉动变星的变光原因是:恒星在经过漫长的主星序阶段以后(见赫罗图),自身的大气层发生周期性的或非周期性的膨胀和收缩,从而引起脉动性的光度变化。理论计算表明脉动周期与恒星密度的平方根成反比。因此那些重复周期为几百乃至几千天的晚型不规则变星、半规则变星和长周期变星都是体积巨大而密度很小的晚型巨星或超巨星周期约在1~50天之间的经典造父变星和周期约在,0.05~1.5天之间的天琴座RR型变星(又叫星团变星),是两种最重要的脉动变星。观测表明,前者的绝对星等随周期增长而变小(这是与密度和周期的关系相适应的),因而可以通过精确测定它们的变光周期来推求它们自身以及它们所在的恒星集团的距离,所以造父变星又有宇宙中的“灯塔”或“量天尺”之称。天琴座RR型变星也有量天尺的作用。
还有一些周期短于0.3天的脉动变星 (包括'" class=link>盾牌座型变星、船帆座AI型变星和型变星'" class=link>仙王座型变星等),它们的大气分成若干层,各层都以不同的周期和形式进行脉动,因而,其光度变化规律是几种周期变化的迭合,光变曲线的形状变化很大,光变同视向速度曲线的关系也有差异。盾牌座δ型变星和船帆座AI型变星可能是质量较小、密度较大的恒星,仙王座β型变星属于高温巨星或亚巨星一类。
爆发变星按爆发规模可分为超新星、新星、矮新星、类新星和耀星等几类。超新星的亮度会在很短期间内增大数亿倍,然后在数月到一、二年内变得非常暗弱。目前多数人认为这是恒星演化到晚期的现象。超新星的外部壳层以每秒钟数千乃至上万公里的速度向外膨胀,形成一个逐渐扩大而稀薄的星云;内部则因极度压缩而形成密度非常大的中子星之类的天体。最著名的银河超新星是中国宋代(公元1054年)在金牛座发现的“天关客星”。现在可在该处看到著名的蟹状星云,其中心有一颗周期约33毫秒的脉冲星。一般认为,脉冲星就是快速自转的中子星。
新星在可见光波段的光度在几天内会突然增强大约9个星等或更多,然后在若干年内逐渐恢复原状。1975年8 月在天鹅座发现的新星是迄今已知的光变幅度最大的一颗。光谱观测表明,新星的气壳以每秒500~2,000公里的速度向外膨胀。一般认为,新星爆发只是壳层的爆发,质量损失仅占总质量的千分之一左右,因此不足以使恒星发生质变。有些爆发变星会再次作相当规模的爆发,称为再发新星。
矮新星和类新星变星的光度变化情况与新星类似,但变幅仅为2~6个星等,发亮周期也短得多。它们多是双星中的子星之一,因而不少人的看法倾向于,这一类变星的爆发是由双星中某种物质的吸积过程引起的。
耀星是一些光度在数秒到数分钟间突然增亮而又很快回复原状的一些很不规则的快变星。它们被认为是一些低温的主序前星。
还有一种北冕座 R型变星,它们的光度与新星相反,会很快地突然变暗几个星等,然后慢慢上升到原来的亮度。观测表明,它们是一些含碳量丰富的恒星。大气中的碳尘埃粒子突然大量增加,致使它们的光度突然变暗,因而也有人把它们叫作碳爆变星。
随着观测技术的发展和观测波段的扩大,还发现了射电波段有变化的射电变星和X射线辐射流量变化的X射线变星等。
恒星结构
根据实际观测和光谱分析,我们可以了解恒星大气的基本结构。一般认为在一部分恒星中,最外层有一个类似日冕状的高温低密度星冕。它常常与星风有关。有的恒星已在星冕内发现有产生某些发射线的色球层,其内层大气吸收更内层高温气体的连续辐射而形成吸收线。人们有时把这层大气叫作反变层,而把发射连续谱的高温层叫作光球。其实,形成恒星光辐射的过程说明,光球这一层相当厚,其中各个分层均有发射和吸收。光球与反变层不能截然分开。太阳型恒星的光球内,有一个平均约十分之一半径或更厚的对流层。在上主星序恒星和下主星序恒星的内部,对流层的位置很不相同。能量传输在光球层内以辐射为主,在对流层内则以对流为主。
对于光球和对流层,我们常常利用根据实际测得的物理特性和化学组成建立起来的模型进行较详细的研究。我们可以从流体静力学平衡和热力学平衡的基本假设出发,建立起若干关系式,用以求解星体不同区域的压力、温度、密度、不透明度、产能率和化学组成等。在恒星的中心,温度可以高达数百万度乃至数亿度,具体情况视恒星的基本参量和演化阶段而定。在那里,进行着不同的产能反应。一般认为恒星是由星云凝缩而成,主星序以前的恒星因温度不够高,不能发生热核反应,只能靠引力收缩来产能。进入主星序之后,中心温度高达700万度以上,开始发生氢聚变成氦的热核反应。这个过程很长,是恒星生命中最长的阶段。氢燃烧完毕后,恒星内部收缩,外部膨胀,演变成表面温度低而体积庞大的红巨星,并有可能发生脉动。那些内部温度上升到近亿度的恒星,开始发生氦碳循环。在这些演化过程中,恒星的温度和光度按一定规律变化,从而在赫罗图上形成一定的径迹。最后,一部分恒星发生超新星爆炸,气壳飞走,核心压缩成中子星一类的致密星而趋于“死亡”(见恒星的形成和演化)。
行星
定义
如何定义行星这一概念在天文学上一直是个备受争议的问题。国际天文学联合会大会2006年8月24日通过了“行星”的新定义,这一定义包括以下三点:
1、必须是围绕恒星运转的天体;
2、质量必须足够大,它自身的吸引力必须和自转速度平衡使其呈圆球状;
3、不受到轨道周围其他物体的影响,能够清除其轨道附近的其它物体。
一般来说,行星的直径必须在800公里以上,质量必须在50亿亿吨以上
收起