如图,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F,AB=4,BC=6,∠B=60°.(1)求点E到BC的距离; (2)点P为线段上的一个动点,过P作PM垂直EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:53:03

如图,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F,AB=4,BC=6,∠B=60°.(1)求点E到BC的距离; (2)点P为线段上的一个动点,过P作PM垂直EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN.
如图,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F,AB=4,BC=6,∠B=60°.
(1)求点E到BC的距离;
(2)点P为线段上的一个动点,过P作PM垂直EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN.
①当点N在线段DC上时,△PMN的形状是否发生变化.
②当点N在线段DC上时,是否存在点P,△PMN为等腰三角形.

如图,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F,AB=4,BC=6,∠B=60°.(1)求点E到BC的距离; (2)点P为线段上的一个动点,过P作PM垂直EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN.
设EP=x
(1)如图1,过点E作EG⊥BC于点G.
∵E为AB的中点,
∴BE=1 2 AB=2
在Rt△EBG中,∠B=60°,∴∠BEG=30度.
∴BG=1 2 BE=1,EG= 2²-1²= 根号3
即点E到BC的距离为 根号3
(2)①当点N在线段AD上运动时,△PMN的形状不发生改变.
∵PM⊥EF,EG⊥EF,
∴PM∥EG,又EF∥BC,
∴四边形EPMG为平行四边形,
∴EP=GM,PM=EG= 3
同理MN=AB=4.
如图2,过点P作PH⊥MN于H,
∵MN∥AB,
∴∠NMC=∠B=60°,∠PMH=30度.
∴PH=½ PM= 根号3/2∴MH=PM•cos30°=3/2
则NH=MN-MH=4-3 /2 =5 /2
在Rt△PNH中,PN= NH2+PH2 = (5 /2 )2+( 3 / 2 )2 = 7
∴△PMN的周长=PM+PN+MN= 3 + 7 +4
②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形.
当PM=PN时,如图3,作PR⊥MN于R,则MR=NR.
类似①,MR=3 /2 ,
∴MN=2MR=3.
∵△MNC是等边三角形,
∴MC=MN=3.
此时,x=EP=GM=BC-BG-MC=6-1-3=2.
当MP=MN时,
∵EG= 根号3 ,
∴MP=MN= 3 ,
∵∠B=∠C=60°,
∴△MNC是等边三角形,
∴MC=MN=MP= 根号3
此时,x=EP=GM=6-1- 根号3 =5-根号 3 ,
当NP=NM时,如图5,∠NPM=∠PMN=30度.
则∠PNM=120°,又∠MNC=60°,
∴∠PNM+∠MNC=180度.
因此点P与F重合,△PMC为直角三角形.
∴MC=PM•tan30°=1.
此时,x=EP=GM=6-1-1=4.
综上所述,当x=2或4或(5- 根号3 )时,△PMN为等腰三角形.

http://wenku.baidu.com/view/50443a6c1eb91a37f1115c03.html

设EP=x
(1)如图1,过点E作EG⊥BC于点G.
∵E为AB的中点,
∴BE=1 2 AB=2
在Rt△EBG中,∠B=60°,∴∠BEG=30度.
∴BG=1 2 BE=1,EG= 2²-1²= 根号3
即点E到BC的距离为 根号3
(2)①当点N在线段AD上运动时,△PMN的形状不发生改变.
∵PM⊥E...

全部展开

设EP=x
(1)如图1,过点E作EG⊥BC于点G.
∵E为AB的中点,
∴BE=1 2 AB=2
在Rt△EBG中,∠B=60°,∴∠BEG=30度.
∴BG=1 2 BE=1,EG= 2²-1²= 根号3
即点E到BC的距离为 根号3
(2)①当点N在线段AD上运动时,△PMN的形状不发生改变.
∵PM⊥EF,EG⊥EF,
∴PM∥EG,又EF∥BC,
∴四边形EPMG为平行四边形,
∴EP=GM,PM=EG= 3
同理MN=AB=4.
如图2,过点P作PH⊥MN于H,
∵MN∥AB,
∴∠NMC=∠B=60°,∠PMH=30度.
∴PH=½ PM= 根号3/2∴MH=PM•cos30°=3/2
则NH=MN-MH=4-3 /2 =5 /2
在Rt△PNH中,PN= NH2+PH2 = (5 /2 )2+( 3 / 2 )2 = 7
∴△PMN的周长=PM+PN+MN= 3 + 7 +4
②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形.
当PM=PN时,如图3,作PR⊥MN于R,则MR=NR.
类似①,MR=3 /2 ,
∴MN=2MR=3.
∵△MNC是等边三角形,
∴MC=MN=3.
此时,x=EP=GM=BC-BG-MC=6-1-3=2.
当MP=MN时,
∵EG= 根号3 ,
∴MP=MN= 3 ,
∵∠B=∠C=60°,
∴△MNC是等边三角形,
∴MC=MN=MP= 根号3
此时,x=EP=GM=6-1- 根号3 =5-根号 3 ,
当NP=NM时,如图5,∠NPM=∠PMN=30度.
则∠PNM=120°,又∠MNC=60°,
∴∠PNM+∠MNC=180度.
因此点P与F重合,△PMC为直角三角形.
∴MC=PM•tan30°=1.
此时,x=EP=GM=6-1-1=4.
综上所述,当x=2或4或(5- 根号3 )时,△PMN为等腰三角形

收起

已知在等腰梯形ABCD中,AD平行于BC,AD+BC=18 求梯形ABCD的高已知在等腰梯形ABCD中,AD平行于BC,AD+BC=18 求梯形ABCD的高 如图 如图,在等腰梯形ABCD中,AD∥BC,dian M是BC的中点,且MA∥MD,求证:四边形ABCD是等腰梯形图 在等腰梯形ABCD中,AD//BC, 如图,在梯形ABCD中,AD‖BC,AB=CD,请说明:梯形ABCD是等腰梯形 如图在梯形ABCD中,∠B=∠C,AD//BC,求证:梯形ABCD是等腰梯形 已知,如图,在梯形ABCD中,AD//BC,M,N分别是AD,BC的中点,且MN⊥BC.求证:梯形ABCD是等腰梯形 如图,在等腰梯形ABCD中,AC=BC+AD,求角DBC的度数 如图,在等腰梯形ABCD中,AC=BC+AD,求角DBC的度数 如图,在等腰梯形ABCD中,AC=BC+AD,求∠DBC的度数 如图,在梯形ABCD中,AD//BC,∠B=∠C,求证四边形ABCD是等腰梯形 如图,等腰梯形abcd中,AD 如图,在等腰梯形ABCD中,AD//BC,BC=3,AD=1,角B=45度 在梯形ABCD中,AD平行BC,AD小于BC,E,F分别是AD,BC的中点,而且EF垂直于BC,那么ABCD是等腰梯形如图,在梯形ABCD中,AD平行BC,AD小于BC,E,F分别是AD,BC的中点,而且EF垂直于BC,那么,梯形ABCD是等腰梯形吗? 如图,梯形ABCD中,AD∥BC,∠1=∠2.求证:四边形ABCD是等腰梯形. 如图,在等腰梯形ABCD中,AD∥BC,AB=CD,且AC⊥BD,AF是梯形的高,梯形面积是49cm² 如图,在梯形ABCD中,AD//BC,M为AD的中点,且MB=MC,梯形ABCD是等腰梯形嘛?为什么? 如图,在梯形ABCD中,AD‖BC,M为AD的中点,且MB=MC.梯形ABCD是等腰梯形吗?为什么? 如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.求证:梯形ABCD是等腰梯形;