人造金刚石的缺点?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:35:03
人造金刚石的缺点?
人造金刚石的缺点?
人造金刚石的缺点?
折射率和天然的不同!
无成形,而且制作条件困难.
颗粒小,杂质多。
金刚石具有优异的物理化学性能:高的硬度、高热导率、高光学透过性能、高化学稳定性、宽禁带宽度、负的电子亲合性、高绝缘性以及良好的生物兼容性等,这使得金刚石成为21世纪最具潜力的新型功能材料。但由于天然金刚石稀少且价格昂贵,无法应用于大规模生产中,从而限制了人们对金刚石的应用。人造金刚石具有与天然金刚石相同的结构和与之相媲美的性能,而且成本低廉,因此有着广泛的应用和商业前景。
金刚石结构
全部展开
金刚石具有优异的物理化学性能:高的硬度、高热导率、高光学透过性能、高化学稳定性、宽禁带宽度、负的电子亲合性、高绝缘性以及良好的生物兼容性等,这使得金刚石成为21世纪最具潜力的新型功能材料。但由于天然金刚石稀少且价格昂贵,无法应用于大规模生产中,从而限制了人们对金刚石的应用。人造金刚石具有与天然金刚石相同的结构和与之相媲美的性能,而且成本低廉,因此有着广泛的应用和商业前景。
金刚石结构
金刚石是典型的原子晶体,属于等轴晶系,它的晶格是一个复式格子,在一个面心立方原胞内有四个碳原子,这四个原子分别位于四个空间的对角线的1/4处。金刚石中碳原子的结合是由于碳原子外壳的四个价电子2s,2p3的杂化而形成共价键(sp3)。每个碳原子和周围四个碳原子共价,一个碳原子在正四面体的中心,另外四个同它共价的原子在正四面体的顶角上,中心的碳原子和顶角上每一个碳原子共用两个价电子。棒状线条视为共价键。因此得出,正四面体中心的碳原子价键的取向同顶角上的碳原子是不同的。比如:若一个的价键指向左上方,则另一个的价键必指向右下方。由于价键的取向不同,这两种碳原子周围的情况也不同,即立方体的顶角及面心上碳原子的周围情况是不同于在对角线上的四个碳原子的情况。因此,金刚石结构式复式格子,由两个面心立方的布喇菲原胞沿其空间对角线位移1/4的长度套构而成。
金刚石优异性能
由于金刚石特殊的晶体结构,使金刚石具有许多优异的性能。诸如在所有的物质中具有最高的硬度(HV≈100GPa);在30~650℃内,是热导率最优良的固体物质20W/(cm•K);对于高纯的金刚石,除红外区(1800~2500nm)的一小带外,对红外光和可见光都具有非常优异的透光性能,可应用于短波长光、紫外线的探测器中;金刚石又是良好的绝缘体,室温下电阻率为1016Ω•cm,掺杂后可成为半导体材料,能制作高温、高频、高功率器件;此外还具备许多其他特殊的优异性能,如耐腐蚀、抗辐射、耐高温、化学惰性等。因此,由于金刚石诸多优异的性能使得金刚石在现代化的工业领域有着广泛的应用前景。
金刚石制备
高温高压(HTHP) [8]法
高温高压(HTHP)法最早是以石墨为原料的,引入适宜的金属催化剂Fe、Co、Ni、Mn、Cr等,在2000K以上温度,几万个大气压下可以合成金刚石。目前,高温高压(HTHP)法只能生长小颗粒的金刚石;在合成大颗粒金刚石单晶方面主要使用晶种法,在较高压力和较高温度下(6000MPa,1800K),几天时间内使晶种长成粒度为几个毫米,重达几个克拉的宝石级人造金刚石,较长时间的高温高压使得生产成本昂贵,设备要求苛刻。而且HTHP金刚石由于使用了金属催化剂,使得金刚石中残留有微量的金属粒子,因此要想完全取代天然金刚石还有相当的距离[9]。
1.3.2化学气相沉积(CVD) [10]法
化学气相沉积(CVD)法是在高温条件下使原料分解,生成碳原子或甲基原子团等活性粒子,并在一定工艺条件下,在基材(衬底)材料上沉积生长金刚石膜的方法。常见的CVD方法包括:热化学沉积(TCVD)法,等离子体化学气相沉积(PCVD)法。等离子体化学气相沉积法又可以分为直流等离子体化学气相沉积(DC-PCVD)法、射频等离子体化学气相沉积(RF-PCVD) 法和微波等离子体化学气相沉积(MPCVD)法及微波电子回旋共振等离子体增强化学气相沉积(ECR-PCVD)法等。
微波等离子体化学气相沉积(MPCVD)由于微波激发等离子体具有无极放电、污染少、等离子体密度高、成本低、衬底外形适应性强等优点,受到国内外研究者的普边关注。而且其中等离子体是由微波激发产生,微波能通过波导管传输到沉积生长室,使气体激发成为等离子体并分解为各种基团。圆筒状微波等离子体CVD是最基本的一种装置,通过矩形波导管把2.45GHz的微波限制在发生器和生长室之间,衬底经微波辐射和等离子体加热。
微波等离子体CVD法(MPCVD)与热丝CVD法(HFCVD)相比,避免了HFCVD法中因热金属丝蒸发而对金刚石造成的污染以及热金属丝对强腐蚀性气体(如高浓度氧、卤素气体等)十分敏感的缺点,使得在工艺中能够使用的反应气体的种类比HFCVD中多许多;与直流等离子体炬相比,微波功率调节连续平缓,使得沉积温度可连续稳定变化,克服了直流电弧法中因电弧的点火及熄灭而对衬底和金刚石的巨大热冲击所造成的金刚石晶粒容易从基片上脱落的问题[18];通过对MPCVD反应室结构的调整,可以在沉积腔中产生大面积而又稳定的等离子体球,有利于大面积、均匀地沉积金刚石,这一点又是火焰法所难以实现的[19]。因而MPCVD法制备金刚石的优越性在目前的制备中显得十分突出。
收起