复数z,ω满足zω+2zi-2iω+1=0,求证:若|z|=根号3,则|ω-4i|是常数并求出该常数.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:49:20

复数z,ω满足zω+2zi-2iω+1=0,求证:若|z|=根号3,则|ω-4i|是常数并求出该常数.
复数z,ω满足zω+2zi-2iω+1=0,求证:若|z|=根号3,则|ω-4i|是常数并求出该常数.

复数z,ω满足zω+2zi-2iω+1=0,求证:若|z|=根号3,则|ω-4i|是常数并求出该常数.
因为zw+2zi-2iw+1=0
所以z(w+2i)=-1+2wi
若w=-2i,则-1+2wi=-1+2(-2i)i≠0
所以w≠-2i
所以z=(-1+2wi)/(w+2i)
设w=x+yi
则有z=(-1+2(x+yi)i)/(x+yi+2i)
=((-1-2y)+2xi)/(x+(y+2)i)
两边取模并平方得
3=|z|^2=((-1-2y)^2+(2x)^2)/(x^2+(y+2)^2)
所以3(x^2+y^2+4y+4)=4y^2+4y+1+4x^2
所以x^2+y^2-8y-11=0
所以x^2+(y-4)^2=27
所以|w-4i|=|x+(y-4)i|=√(x^2+(y-4)^2)=√27=3√3

真心的不会