(1)minZ=x1+2X23x1+4x2>=6x1+3x2>=32x1+X2>=2x1,x2>=0(2)minZ=2x1+X25x1+10x2-x3=8x1+x2+x4=1Xj>=0(j=1,2,3,4)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:42:26
(1)minZ=x1+2X23x1+4x2>=6x1+3x2>=32x1+X2>=2x1,x2>=0(2)minZ=2x1+X25x1+10x2-x3=8x1+x2+x4=1Xj>=0(j=1,2,3,4)
(1)minZ=x1+2X2
3x1+4x2>=6
x1+3x2>=3
2x1+X2>=2
x1,x2>=0
(2)minZ=2x1+X2
5x1+10x2-x3=8
x1+x2+x4=1
Xj>=0(j=1,2,3,4)
(1)minZ=x1+2X23x1+4x2>=6x1+3x2>=32x1+X2>=2x1,x2>=0(2)minZ=2x1+X25x1+10x2-x3=8x1+x2+x4=1Xj>=0(j=1,2,3,4)
都用Mathematica求解
(1)
Minimize[x1 + 2x2,3x1 + 4x2 ≥ 6 && x1 + 3x2 ≥ 3 && 2x1 + x2 ≥ 2 && x1≥ 0 && x2 ≥ 0,{x1,x2}]
结果:{12/5,{x1->6/5,x2->3/5}}
(2)Minimize[2x1 + x2,5x1 + 10x2 - x3 == 8 && x1 + x2 + x4 == 1 && x1 ≥ 0 && x2 ≥ 0 && x3 ≥ 0 && x4 ≥ 0,{x1,x2,x3,x4}]
结果:{4/5,{x1->0,x2->4/5,x3->0,x4->1/5}}
化为对偶型:
(1)max f=6y1+3y2+2y3
-3y1-y2-2y3<=-1
-4y1-3y2-y3<=-2
y1,y2,y3<=0
(2)max f=8y1+y2
5y1+y2>=2
10y1+y2>=1
-y3>=0
y4>=0
y1,y2无约束。
我就不算了,太烦,懒得算。