计算∫∫∫(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z与平面z=2,z=8所围成的闭区域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:14:30
计算∫∫∫(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z与平面z=2,z=8所围成的闭区域
计算∫∫∫(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z与平面z=2,z=8所围成的闭区域
计算∫∫∫(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z与平面z=2,z=8所围成的闭区域
这种题目的基本思路是运用Fubini定理,必要时用极坐标换元.
计算三重积分∫∫∫(|x|+|y|+|z|)dv,其中Ω:x^2+y^2+z^2≤a^2,哪位大师来解下,
计算三重积分∫∫∫(x^3y-3xy^2+3xy)dV,其中V是球体(x-1)^2+(y-1)^2+(z-2)^2
计算三重积分∫∫∫(x^3y-3xy^2+3xy)dV,其中V是球体(x-1)^2+(y-1)^2+(z-1)^2
∫∫∫z^2dv,其中U是球面X^2+Y^2+Z^2
∫∫∫z^2dV,其中Ω是两个球x^2+y^2+z^2
三重积分计算:计算 ∫∫∫Ω√x²+y²+z² * dv ,其中Ω:x²+y²+z²≤x
用球坐标计算三重积分I=∫∫∫z^2dv 其中图形是由x^2+y^2+z^2
计算三重积分I=∫∫∫z^2dv 其中图形是两个球体x^2+y^2+z^2
计算三重积分I=∫∫∫Ω(x^2+y^2+z^2)dv,其中Ω:x^2+y^2+z^2=a^2求具体结果
计算三重积分I=∫∫∫Ω(x^2+y^2+z^2)dv,其中Ω:(x/a)^2+(y/b)^2+(z/c)^2<=1
计算I=∫∫∫Ω(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z及平面z=2所围成的区域.
计算Ω∫∫∫(x^2+y^2+z^2)dV,其中Ω是球面x^2+y^2+z^2=1所围成的闭区域
计算三重积分∫∫∫(x^2+y^2+z^2)dv,其中Ω由z=x^2+y^2+z^2所围成的闭区域.
计算∫∫∫(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z与平面z=2,z=8所围成的闭区域
计算∫∫∫(x+y+z^2)dV,其中Ω即区域范围是由曲面x^2+y^2-Z^2=1和平面z=H,z=-H(H>0)所围成.
计算三重积分∫∫∫Z√(x∧2+y∧2)dv,其中Ω是由曲面z=x∧2+y∧2,平面z=1所围成的立体
计算三重积分∫∫∫Ω(x^2+y^2)dv,Ω={(x,y,z)|(x^2+y^2)/2≤z≤2}
计算三重积分∫∫∫(x+y+z)dv,其中Ω={(x,y,z)|xx+yy≤zz,0≤z≤h}