设F是抛物线C:Y2=4X焦点,过点A(-1,0)的直线l与抛物线交于M,N求线段MN的中点的轨迹方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 22:43:08
设F是抛物线C:Y2=4X焦点,过点A(-1,0)的直线l与抛物线交于M,N求线段MN的中点的轨迹方程
设F是抛物线C:Y2=4X焦点,过点A(-1,0)的直线l与抛物线交于M,N
求线段MN的中点的轨迹方程
设F是抛物线C:Y2=4X焦点,过点A(-1,0)的直线l与抛物线交于M,N求线段MN的中点的轨迹方程
设M=(4mm,4m),N=(4nn,4n)
过MN直线:
(m+n)y - x - 4mn=0
过A(-1,0)
=>
mn=1/4
中点P(x,y)
x=2mm+2nn
y=2m+2n
=>
yy - 2x = 8mn = 2
即:轨迹方程为yy=2x+2,
定义域即x范围,
x=2mm+2nn>=4mn=1(注意M,N是不同的两个点,m≠n)
yy=2x+2(x>1)
设线段MN的中点(x,y) ,则
k(MN)=(yM-yN)/(xM-xN)= y/(x+1)
yM+yN=2y,xM+xN=2x
y^2=4x
(yM)^2=4xM......(1)
(yN)^2=4xN.....(2)
(1)-(2):
(yM+yN)*(yM-yN)=4(xM-xN)
(yM+yN)*(yM-yN)/(xM-xN)=4
2y*y/(x+1)=4
线段MN的中点的轨迹方程是抛物线:y^2=2(x+1)
已知点F是抛物线C:y2=4X的焦点,过点F点且斜率为根号三的直线交抛线 C于A,B两点,设|FA|>|FB|,则|FA|﹕|FB|的值是多少?
设F是抛物线C:Y2=4X焦点,过点A(-1,0)的直线l与抛物线交于M,N求线段MN的中点的轨迹方程
已经椭圆E:x2/a2+y2/b2=1(a>b>0)的右焦点恰好是抛物线C:y2=4x的焦点F,点A是椭圆E的右顶点.过点A的直...已经椭圆E:x2/a2+y2/b2=1(a>b>0)的右焦点恰好是抛物线C:y2=4x的焦点F,点A是椭圆E的右顶点.过点A的
已知抛物线C:y2(方)=4x的焦点为F,过点K(-1,0)的直线L与C相交于A.B两点,点A关于X轴的对称点为D.抛物线C:y^2=4x①的焦点为F(1,0),设过点K(-1,0)的直线L:x=my-1,
已知抛物线C:x^2=4y的焦点为F,直线l过点F交抛物线C于A、B两点已知抛物线C:x^2=4y的焦点为F,直线l过点F交抛物线C于A、B两点(1)设A(x1,y1),B(x2,y2),求1/y1+1/y2的取值范围(2)是否存在定点Q,
设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若点A(1,2),△ABC的重心与抛物线的焦点F重合,则BC边所在直线方程为
设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点设F为抛物线C:y^2=4x的焦点,过点P(-1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2根号3,则直
设抛物线Y2=2X的焦点为F,过点M(根号3,0)的直线与之交于A、B点,与抛物线的准线交于点C,|BF|=2,则三
给定抛物线C:Y平方=4X,F是C的焦点,过点给定抛物线C:Y平方=4X,F是C的焦点,过点F的直线l与C相交于A B给定抛物线C:Y平方=4X,F是C的焦点,过点F的直线l与C相交于A B两点设向量FB=入向量AF,若入
数学题求解:设P是抛物线y2=4x上的一个动点,F是抛物线 上的焦点,定点A(3,2),求|PF|+|PA|的最小值设P是抛物线y2=4x上的一个动点,F是抛物线 上的焦点,定点A(3,2),求|PF|+|PA|的最小值 那个回答是
设F为抛物线y2=4X的焦点.A.B.C为该抛物线上三点,若FA+FB+FC=O.则∣FA∣+∣FB∣+∣FC∣=?设A(x1,y1),B(x2,y2),C(x3,y3)抛物线焦点坐标F(1,0),准线方程:x=-1∵FA+FB+FC=O∴点F是△ABC重心则x1+x2+x3=3y1+y2+y3=0而|FA|=x1
设过原点的直线L与抛物线Y2=4(X-1)交于A ,B两点,且以AB为直径的圆恰好过抛物线的焦点F,求直线的方程主要是焦点如何求?
抛物线C的方程为y2=4x,焦点为F,准线与x轴的交点为K.过点F作倾斜角为兀/4的直线交抛物线C于A,B两点,抛物线C的方程为y2=4x,焦点为F,准线与x轴的焦点为K.过点F作倾斜角为兀/4的直线交抛物线C于A,B
设抛物线C:y^2=4x的焦点为F,过F点作直线交抛物线C于A,B两点,则三角形AOB的最小面积是()答案:2求详解
已知抛物线C:y2(方)=4x的焦点为F,过点K(-1,0)的直线L与C相交于A.B两点,点A关于X轴的对称点为D.证明,1.点F在直线BD上 2.设(向量)FA•(向量)FB=8/9.求⊿BDK的内切圆M的方程.
设抛物线C:y2=2px(p>0)的焦点为F,经过点F的动直线l交抛物线C于点A(x1,y1),B(x2,y2)且y1y2=-4(1)求抛物线C的方程(2)若直线2x+3y=0平分线段AB,求直线l倾斜角(3)若点M是抛物线C的准线
设抛物线C:y2=2px(p>0)的焦点为F,经过点F的动直线l交抛物线C于点A(x1,y1),B(x2,y2)且y1y2=-4(1)求抛物线C的方程(2)若直线2x+3y=0平分线段AB,求直线l倾斜角(3)若点M是抛物线C的准线
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B,点C在抛物线的准线上,且BC平行与x轴求证