矩阵论证明题设A,B为复空间的n阶矩阵,A、B的特征值分别为a1,a2,...,an和b1,b2,...,bn,用Schur分解证明:如果AB=BA,在A+B的特征值为a1+b1,a2+b2,...,an+bn如果书写不便可将答案发到xmuljp@foxmail.com打错了:如

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:55:23

矩阵论证明题设A,B为复空间的n阶矩阵,A、B的特征值分别为a1,a2,...,an和b1,b2,...,bn,用Schur分解证明:如果AB=BA,在A+B的特征值为a1+b1,a2+b2,...,an+bn如果书写不便可将答案发到xmuljp@foxmail.com打错了:如
矩阵论证明题
设A,B为复空间的n阶矩阵,A、B的特征值分别为a1,a2,...,an和b1,b2,...,bn,用Schur分解证明:
如果AB=BA,在A+B的特征值为a1+b1,a2+b2,...,an+bn
如果书写不便可将答案发到xmuljp@foxmail.com
打错了:如果AB=BA,则A+B的特征值为a1+b1,a2+b2,...,an+bn

矩阵论证明题设A,B为复空间的n阶矩阵,A、B的特征值分别为a1,a2,...,an和b1,b2,...,bn,用Schur分解证明:如果AB=BA,在A+B的特征值为a1+b1,a2+b2,...,an+bn如果书写不便可将答案发到xmuljp@foxmail.com打错了:如
一个活人.”
  就这样,他把悬在衣领上的阿·摩斯柯特先生沿着街道中间拎了过去,在马孔多到沼泽地的路上他才让他双脚着地.

矩阵论证明题设A,B为复空间的n阶矩阵,A、B的特征值分别为a1,a2,...,an和b1,b2,...,bn,用Schur分解证明:如果AB=BA,在A+B的特征值为a1+b1,a2+b2,...,an+bn如果书写不便可将答案发到xmuljp@foxmail.com打错了:如 设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵 设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵 设A、B均为n阶矩阵,且A为对称矩阵,证明:BAB`T也是对称矩阵.(B`T为B的转置矩阵.) 矩阵A为n阶矩阵, 已知A为n阶可逆矩阵,求A的伴随矩阵的逆矩阵 设A,B为n阶矩阵,如果B为矩阵方程AXA=A的唯一解,证明:A为矩阵方程BXB=B的解 设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵 D正交矩阵 设A为m阶对称矩阵,B为m*n矩阵,证明B的转置乘AB为n阶对称矩阵 A为n阶对称矩阵,B为n阶反对称矩阵,证明B^2是对称矩阵,火速! A为n阶可逆对称矩阵,B为n阶对称矩阵,当I+AB可逆时,证明:(I+AB)的逆乘A为对称矩阵 A为n阶可逆对称矩阵,B为n阶对称矩阵,当I+AB可逆时,证明:(I+AB)的逆乘A为对称矩阵 设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵 A,B均为n阶矩阵,B B为正交矩阵,则|A|^2= 已知n阶矩阵A,B和C满足ABC=E,其中E为n阶单位矩阵,则B的逆矩阵为 设A为n阶正定矩阵,B是与A合同的n阶矩阵,证明B也是正定矩阵. n阶矩阵A,B相似,m阶矩阵C,D相似,证明:主对角线为A,C的分块矩阵和主对角线为B,D的分块矩阵相似.分块矩阵,非主对角线全为零. 设A为m阶实对称矩阵且正定,B为m×n矩阵,证明:BTAB为正定矩阵的充要条件是rankB=n