请证明抛物线的一个几何性质:过抛物线y2=4x (y的平方)的焦点F任作直线l与抛物线交于A,B两点,则在x轴上存在定点M(-1,0),使直线MF始终是角AMB的平分线 向量法坐标法我会用,我要的是几何

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:11:34

请证明抛物线的一个几何性质:过抛物线y2=4x (y的平方)的焦点F任作直线l与抛物线交于A,B两点,则在x轴上存在定点M(-1,0),使直线MF始终是角AMB的平分线 向量法坐标法我会用,我要的是几何
请证明抛物线的一个几何性质:过抛物线y2=4x  (y的平方)的焦点F任作直线l与抛物线交于A,B两点,则在x轴上存在定点M(-1,0),使直线MF始终是角AMB的平分线  向量法坐标法我会用,我要的是几何证明法,最好能配上图,做了图发邮箱也行cookiedale@163.com 重谢! 

请证明抛物线的一个几何性质:过抛物线y2=4x (y的平方)的焦点F任作直线l与抛物线交于A,B两点,则在x轴上存在定点M(-1,0),使直线MF始终是角AMB的平分线 向量法坐标法我会用,我要的是几何
设A(x_1,y_1),B(x_2,y_2)

若直线AB斜率不存在,那么AB⊥MF
由对称性,显然MF平分∠AMB

若直线AB斜率为k (k≠0)
由于F (1,0)在AB上,所以AB的方程为
y=k(x-1)
联立直线、抛物线方程,消去y,得到
k^2 x^2-(2k^2+4)x+k^2=0
所以
x_1+x_2=2+4/k^2
x_1•x_2=1
易知直线AM、BM的方程为
AM:(x_1+1)y-y_1 x-y_1=0
BM:(x_2+1)y-y_2 x-y_2=0
O到AM、BM的距离
d_1=(|-y_1 |)/√((x_1+1)^2+〖y_1〗^2 )
d_2=(|-y_2 |)/√((x_2+1)^2+〖y_2〗^2 )
欲证明MF平分∠AMB,只需证明MO是∠AMB的平分线
只需证明d_1=d_2
将〖y_1〗^2=4x_1,〖y_2〗^2=4x_2代入,并整理,
即证
(1-1/(x_1 x_2 ))(x_1-x_2 )=0
由于x_1• x_2=1,所以上式成立
原命题得证.

请证明抛物线的一个几何性质:过抛物线y2=4x (y的平方)的焦点F任作直线l与抛物线交于A,B两点,则在x轴上存在定点M(-1,0),使直线MF始终是角AMB的平分线 向量法坐标法我会用,我要的是几何 抛物线的几何性质 抛物线及其标准方程.抛物线的简单几何性质请详细写出,thx 椭圆的几何性质,双曲线的几何性质,抛物线的几何性质 椭圆`双曲线`抛物线的几何性质对比表 抛物线 性质证明A(x1,y1),B(x2,y2),A,B在抛物线y2=2px上,则有:① x1x2 = p²/4 ,y1y2 = -p² (要在直线过焦点时才能成立); 一道基本的解析几何证明过抛物线y2=2px上的两点A、B分别引抛物线的切线,其交点恰在抛物线的准线上,求证直线AB经过抛物线的焦点. 抛物线的一证明题(简易).急过抛物线y^2=4ax的焦点的一条直线和这条抛物线相交,两交点的纵坐标为y1,y2.求证y1 x y2 = -4a^2 跪求抛物线焦点弦的特殊性质及其证明 跪求抛物线焦点弦的特殊性质及其证明 如何用几何画板作过两定点的抛物线 一束平行光射到一条抛物线上各点,它们的反射光线过哪点,请证明. 一束平行光射到一条抛物线上各点,它们的反射光线过哪点,请证明. 高二数学抛物线证明题(追分不低于15,上不封顶!)M(a,0)(a>0)是抛物线y2=4x对称轴上一点,过M作抛物线的弦AMB,交抛物线与A,B. (1)若a=2,求弦AB中点的轨迹方程; (2)过M作抛物线的另一条 已知抛物线C:y方=2px(p>0)过点A(1,-2).求抛物线C的方程,并求其准线方程还有一个题 过抛物线y=2px(p>0)的焦点F的直线L交抛物线于A(x1,y1)B(x2,y2)两点.证明x1x2为定值,求定值.求的|AB|取值范围 几何画板怎么做一个抛物线上的顶点 有关抛物线的所有性质 关于抛物线的一些性质,