证明,tanatan2a/tan2a-tana=sin2a=2{sina/cosa}/cos^2a/cos^2+sin^2/cos^2分子分母同时成cos^2= [2tanα·(cosα)^2]/[(cosα)^2 + (sinα)^2]= (2sinαcosα)/1= sin2α

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:37:45

证明,tanatan2a/tan2a-tana=sin2a=2{sina/cosa}/cos^2a/cos^2+sin^2/cos^2分子分母同时成cos^2= [2tanα·(cosα)^2]/[(cosα)^2 + (sinα)^2]= (2sinαcosα)/1= sin2α
证明,tanatan2a/tan2a-tana=sin2a
=2{sina/cosa}/cos^2a/cos^2+sin^2/cos^2
分子分母同时成cos^2
= [2tanα·(cosα)^2]/[(cosα)^2 + (sinα)^2]
= (2sinαcosα)/1
= sin2α

证明,tanatan2a/tan2a-tana=sin2a=2{sina/cosa}/cos^2a/cos^2+sin^2/cos^2分子分母同时成cos^2= [2tanα·(cosα)^2]/[(cosα)^2 + (sinα)^2]= (2sinαcosα)/1= sin2α
分子 = tanα·tan2α = tanα·2tanα/[1 - (tanα)^2] ,分母 = tan2α - tanα = 2tanα/[1 - (tanα)^2] - tanα ,分子分母同时乘以 [1 - (tanα)^2] ,
原式 = tanα·2tanα/{2tanα - tanα·[1 - (tanα)^2]}
= 2(tanα)^2/[tanα + (tanα)^3]
= 2tanα/[1 + (tanα)^2]
= [2tanα·(cosα)^2]/[(cosα)^2 + (sinα)^2]
= (2sinαcosα)/1
= sin2α
证毕.