高中数学函数和最值已知y=ax^2+bx+c(a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:40:52

高中数学函数和最值已知y=ax^2+bx+c(a
高中数学函数和最值
已知y=ax^2+bx+c(a

高中数学函数和最值已知y=ax^2+bx+c(a
当a=0时 y=bx+c 显然不可能恒大于等于0
当a≠0时 y=ax²+bx+c 要使函数值恒大于等于0,必有
b>a>0,△=b²-4ac≤0 即c≥b²/4a
故M=(a+b+c)/(b-a)≥(8a²+b²/4ab-4a²)+1
设函数f(a)=8a²+b²/4ab-4a² (0<a<b)
求导得 并令f’(a)=0 得 a=b/4
∴f(a)在(0,b/4]单调递减,在[b/4,b)上单调递增
∴f(a)在a=b/4时取得最小值2
∴M(min)=f(a)(min)+1=3
即M最小值为3