数列{an}满足a1=2,na(n+1)-3(n+1)an=-2n,则an=数列{an}满足a1=2,na(n+1)-3(n+1)an=-2n²-4n-3,则an=不好意思
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:53:11
数列{an}满足a1=2,na(n+1)-3(n+1)an=-2n,则an=数列{an}满足a1=2,na(n+1)-3(n+1)an=-2n²-4n-3,则an=不好意思
数列{an}满足a1=2,na(n+1)-3(n+1)an=-2n,则an=
数列{an}满足a1=2,na(n+1)-3(n+1)an=-2n²-4n-3,则an=
不好意思
数列{an}满足a1=2,na(n+1)-3(n+1)an=-2n,则an=数列{an}满足a1=2,na(n+1)-3(n+1)an=-2n²-4n-3,则an=不好意思
na(n+1)-3(n+1)an=-2n²-4n-3
na(n+1)-n²-2n
=3(n+1)an-3n²-6n-3
=3(n+1)an-3(n+1)²
=3(n+1)(an-n-1)
即n[a(n+1)-(n+1)-1]=3(n+1)(an-n-1)
[a(n+1)-(n+1)-1]/(n+1)=3(an-n-1)/n
设数列{bn},令bn=(an-n-1)/n
则有b(n+1)=3bn
所以{bn}是等比数列
又b1=a1-1-1=0
所以bn=b1*q^(n-1)=0
即(an-n-1)/n=0
所以an=n+1
a1=2,则a=2
代入得2n(n+1)-6n(n+1)=-2n,简化得(2n-6n)(n+1)=-2n,解得n=1/2,则2n=1
若数列{An}满足A1=2,nA(n+1)-(n+1)An=2,则数列{An}的通项公式A后面的n都是下标
数列an满足na(n+1)=(n+2)an,a1=1,求数列an的通项公式用累乘法jie
已知数列{an}满足na(n+1)=2(n+1)an,a1=1,求证{an/n}为等比数列(前一个n+1为下标)
数列{An}满足a1=1/2,a1+a2+..+an=n方an,求an
数列{an}满足a1=1 an+1=2n+1an/an+2n
数列{an}满足a1=2,na(n+1)-3(n+1)an=-2n,则an=数列{an}满足a1=2,na(n+1)-3(n+1)an=-2n²-4n-3,则an=不好意思
已知数列{an}满足na(n+1下角标)=2(n+1)an(n为N*),a1=1.(1)求证:{an除以n}为等比数列(2)求数列{an}的通项公式
数列{an}满足a1=2,a(n+1)=2an+n+2,求an
数列an满足a1=1/3,Sn=n(2n-1)an,求an
数列{an}满足a1=1,且an=an-1+3n-2,求an
已知数列{an}满足an+1=2an+3.5^n,a1=6.求an
设数列{an},{bn}满足a1=1/2,2na(n+1)=(n+1)an,且{bn}=ln(1+an)+1/2an^2,求a2,a3,a4,并求数列an的通项公式
数列an满足NA(n+1)=2Sn,且a1=1求通项公式N是项数,(n+1)是A的下标
19、已知数列{an},{bn}满足a1=2,2a n=1+a na n+1,bn=an-1(bn不等于0)求证:数列{1/bn}是等差数列,并求数列{an}的通项公式.
1.数列{An}中,A1=8,A4=2且满足A(n+20)=2A(n+1)-An 问(1)求数列{An}的通项公式 (2)设Sn=|A1|+|A2|+……+|An|,求Sn2.数列{An}满足A1=2,对于任意的n∈N都有An>0,且(n+1)An^2+An×A(n+1)-nA(n+1)=0,又知数列{Bn}的通项公
数列an满足a1=1,a(n+1)=an/[(2an)+1],求a2010
已知数列an满足an=1+2+...+n,且1/a1+1/a2+...+1/an
已知数列{an}满足a1=1,an+1·an=2^n 则s2012