(1/2)数列1*n,2(n-1),3(n-2),…,n*1的和为()A.1/6n(n+1)(n+2) B.1/6n(n+1)(2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:40:56

(1/2)数列1*n,2(n-1),3(n-2),…,n*1的和为()A.1/6n(n+1)(n+2) B.1/6n(n+1)(2
(1/2)数列1*n,2(n-1),3(n-2),…,n*1的和为()A.1/6n(n+1)(n+2) B.1/6n(n+1)(2

(1/2)数列1*n,2(n-1),3(n-2),…,n*1的和为()A.1/6n(n+1)(n+2) B.1/6n(n+1)(2
n * 1 = n(n+1) - n²
1*n + 2(n-1) + 3(n-2) + ... + n*1
= (1+2+3+...+n)(n+1) - (1² + 2² + 3² + ... + n²)
= n(n+1)(n+1)/2 - n(n+1)(2n+1)/6
= n(n+1)(n+2)/6

这是选择题,直接娶n=1和n=2,,那么很容易就可以选择答案为A,再用n=3验证下就OK了

其实这种选择题考试的时候最好就代数,节省时间。
原式=[1(n+1)-1^2]+[2(n+1)-2^2] + ... +[n(n+1) - n^2]= (1+2+...+n)(n+1) - (1^2 + 2^2 + ... + n^2)= n(n+1)(n+1)/2 - n(n+1)(2n+1)/6= n(n+1)(n+2)/6