一道解析几何问题已知抛物线y^2=2px(p>0)(1)过抛物线的焦点为2的直线l交抛物线于A,B两点,若|AB|=2,求p的值;(2)过点M(2p,0)作任何直线l交抛物线于P,Q两点,求证:OP⊥OQ.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:26:11
一道解析几何问题已知抛物线y^2=2px(p>0)(1)过抛物线的焦点为2的直线l交抛物线于A,B两点,若|AB|=2,求p的值;(2)过点M(2p,0)作任何直线l交抛物线于P,Q两点,求证:OP⊥OQ.
一道解析几何问题
已知抛物线y^2=2px(p>0)
(1)过抛物线的焦点为2的直线l交抛物线于A,B两点,若|AB|=2,求p的值;
(2)过点M(2p,0)作任何直线l交抛物线于P,Q两点,求证:OP⊥OQ.
一道解析几何问题已知抛物线y^2=2px(p>0)(1)过抛物线的焦点为2的直线l交抛物线于A,B两点,若|AB|=2,求p的值;(2)过点M(2p,0)作任何直线l交抛物线于P,Q两点,求证:OP⊥OQ.
N(-1,0)
直线L:x=ty+1,与抛物线y2=4x联立后得
y^2-4ty-4=0,
y1+y2=4t,y1y2=-4
(1)kNA+kNB=y1/(y1^2/4 + 1) +y2/(y2^2/4 + 1)
=[1/4y1y2^2+1/4y1^2y2+y1+y2]/(y1^2/4 + 1)(y2^2/4 + 1)
=(y1y2/4 +1)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1)
=(-1+1)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1) =0
(2)S=1/2*|AB|*d
d=|-2|/√(1+t^2)=2/√(1+t^2)
|AB|=√(1+t^2)|y1-y2|=√(1+t^2)*√[(y1+y2)^2-4y1y2]
=√(1+t^2)*√16(1+t^2)
=4(1+t^2)
S=1/2*|AB|*d
=1/2*4(1+t^2)*2/√(1+t^2)
=4√(1+t^2)
当t=0,Smin=4
(3)若M(m,0)时,(1)仍成立
直线L:x=ty+m,与抛物线y2=4x联立后得
y^2-4ty-4m=0,
y1+y2=4t,y1y2=-4m
(1)kNA+kNB=y1/(y1^2/4 + m) +y2/(y2^2/4 + m)
=[1/4y1y2^2+1/4y1^2y2+my1+my2]/(y1^2/4 + m)(y2^2/4 + m)
=(y1y2/4 +m)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1)
=(-m+m)(y1+y2)/(y1^2/4 + m)(y2^2/4 + m) =0
(2)S=1/2*|AB|*d
d=|-2m|/√(1+t^2)=|2m|/√(1+t^2)
|AB|=√(1+t^2)|y1-y2|=√(1+t^2)*√[(y1+y2)^2-4y1y2]
=√(1+t^2)*√16(m+t^2)
S=1/2*|AB|*d
=1/2*√(1+t^2)*√16(m+t^2)*|2m|/√(1+t^2)
=|m|*√16(m+t^2)
=4√m^2(m+t^2)
令u=m^2(m+t^2),u'=2m^2*t=0,
当t>0,u'>0,当t<0,u'<0
t=0是极小值点,
当t=0,Smin=4√m^3=4m*√m
(1)焦点为(p/2,0),若知焦点坐标可求出p,
(2)当l⊥x轴时,把x=2p代入y^2=2px得y= ±2p,
P,Q坐标分别为(2p,2p),(2p,-2p)或(2p,-2p),(2p,2p).
|PM|=|QM|=|OM|,∠POM=∠QOM=45°,∠POQ=∠POM+∠QOM=90°,OP⊥OQ.
当l不垂直于x轴时,设l方程为y=k(x-2p),代入...
全部展开
(1)焦点为(p/2,0),若知焦点坐标可求出p,
(2)当l⊥x轴时,把x=2p代入y^2=2px得y= ±2p,
P,Q坐标分别为(2p,2p),(2p,-2p)或(2p,-2p),(2p,2p).
|PM|=|QM|=|OM|,∠POM=∠QOM=45°,∠POQ=∠POM+∠QOM=90°,OP⊥OQ.
当l不垂直于x轴时,设l方程为y=k(x-2p),代入y^2=2px得k²x²-(4k²+2)px+4k²p²=0,
设P,Q坐标分别为(x1,y1),(x2,y2).
则x1•x2=4k²p²/k²=4p²,(y1)²(y2)²=(y1•y2)²=2px1•2px2=(2p)²(x1•x2)=(2p)²•4p²=(4p²)²,
P,Q在x轴的上下两侧,0>y1•y2=-√[(4p²)²]=-4p²
直线OP,直线OQ的斜率分别为KOP,KOQ,
KOP=y1/x1,KOQ=y2/x2,KOP•KOQ=(y1/x1)•(y2/x2)=y1•y2/(x1•x2)=-4p²|/(4p²)=-1.
直线OP,直线OQ的斜率之积=-1,OP⊥OQ.
综上,OP⊥OQ.
收起
当年轻易的题居然已经不熟悉了55555555
你题目写错看,什么为2啊