已知a,b,c均为正整数,且满足a的平方加上b的平方等于c的平方,又因为a为质数,求证2(a+b+c)是完全平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:36:21

已知a,b,c均为正整数,且满足a的平方加上b的平方等于c的平方,又因为a为质数,求证2(a+b+c)是完全平方
已知a,b,c均为正整数,且满足a的平方加上b的平方等于c的平方,又因为a为质数,求证2(a+b+c)是完全平方

已知a,b,c均为正整数,且满足a的平方加上b的平方等于c的平方,又因为a为质数,求证2(a+b+c)是完全平方
a*a+b*b=c*c,a为质数,设a=3,3*3=9 4*4=16 5*5=25 3+4+5=12,12*2=24,不行.

已知a,b,c均为正整数,且满足a的平方,b的平方,c的平方,有a为质数,求证b,c必为一奇一偶 已知a、b、c均为正整数,且满足a的平方+b的平方=c的平方,又a为质数,求证:①a、b两数必为一奇一偶;②2(a+b+1)是完全平方数 已知a,b,c均为正整数,且满足a的平方加上b的平方等于c的平方,又因为a为质数,求证2(a+b+c)是完全平方 已知a,b,c均为正整数,且满足a的平方加上b的平方等于c的平方,又因为a为质数,求证2(a+b+1)是完全平方式 已知a,b,c均为正整数,且满足a的平方,b的平方,c的平方,有a为质数,求证2(a+b+1)是完全平方式已知a,b,c均为正整数,且满足a的平方加上b的平方等于c的平方,又因为a为质数,求证2(a+b+1)是完全平方式 已知a,b,c均为正整数,且满足a^2+b^2=c^2,又a为质数,求证2(a+b+c)是完全平方数已知a,b,c均为正整数,且满足a^2+b^2=c^2,又a为质数,求证2(a+b+1)是完全平方数 已知 b是最小的正整数且a b满足(c-5)的平方+|a+b|=0, 已知△ABC的三边长a,b,c均为正整数,且a和b满足(a-3)的算术平方根+b的平方-4b+4=0,求边c的长 已知a b为正整数,且满足(a+b)/(a平方+ab+b平方)=4/49 求a b 的值 已知a、b、c均为正整数,且满足a²+b²=c²,又a为质数证明(1)b与c两数必为一奇一偶(2)2(a+b+1)是完全平方数 已知a、b、c均为正整数,且满足a²+b²=c²,有a为质数.证明:(1)、b与c两数必为一奇一偶(2)2(a+b+1)是完全平方数 已知a,b,c均为正整数,且满足a^2+b^2=c^2,又a为质数,(1)证明,b与c两数必为一奇一偶(2)证明,2(a+b+1)是完全平方数 已知a,b是正整数,且满足a的平方-b的平方=2013,求a,b的值 已知a,b,c均为正整数,且满足a^2+b^2=c^2,又a为质数,求证2(a+b+1)是完全平方数 已知a,b,c为正整数满足a 已知等腰三角形ABC的三条边分别为abc(abc均为正整数),且满足a-1的根号+b的平方-4b+4=0,求c 已知等腰三角形ABC的三条边分别为abc(abc均为正整数),且满足a-1的根号+b的平方-4b+4=0,求c都要完整一些 已知a,b,c都是正整数,且满足a的平方+c的平方=10,a的平方+b的平方=13,求a,b,c值!