计算曲面积分ds/x^2+y^2+z^2.其中L是介于平面z=0及z=h之间的圆柱面x^2+y^2=R^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:47:31
计算曲面积分ds/x^2+y^2+z^2.其中L是介于平面z=0及z=h之间的圆柱面x^2+y^2=R^2
计算曲面积分ds/x^2+y^2+z^2.其中L是介于平面z=0及z=h之间的圆柱面x^2+y^2=R^2
计算曲面积分ds/x^2+y^2+z^2.其中L是介于平面z=0及z=h之间的圆柱面x^2+y^2=R^2
根据圆柱面的面积公式,ds=2πRdz
把x^2+y^2=R^2带入原积分得到
原积分=∫ds/(x^2+y^2+z^2)=∫(0->h) 2πRdz/(R^2+z^2)
=2π∫(0->h) d(z/R)/[1+(z/R)^2]
=2π arctan(z/R) |(0->h)
=2π arctan(h/R)
计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)
计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)
空间曲面为球面x^2+y^2+z^2=R^2,计算对面积的曲面积分∫∫(x+y)^2dS
计算第一类曲面积分|xyz|dS ,其中积分区域为z=x^2+y^2被平面z=1所截下的部分
计算曲面积分根号(2-x^2-y^2-z^2)dS,其中∑是半锥面z=根号(x^2+y^2)上0
计算曲面积分∫∫1/(x^2+y^2+z^2)ds,其中S是介于平面z=0及z=H之间的圆柱面x^2+y^2=R^2.(第一类曲面积分计
计算 ∫ ∫∑(x^2+y^2)dS,其中为∑球面x^2+y^2+z^2=a^2 计算曲面积分
计算曲面积分∫∫(x^2)dS,其中S为上球面z=根号(1-x^2-y^2),x^2+y^2
计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分
计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)
计算第一型曲面积分∫ ∫(s)x^2y^2ds s为上半球面z=根号(R^2-x^-y^2)
第一类曲面积分计算∫∫(ax+by+cz)dS,其中∑:x^2+y^2+z^2=2zR
球面x^2+y^2+z^2=9,求曲面积分∫(闭合)x^2ds
[(x+y)^2+z^2+2yz]dS曲面积分,球面为x^2+y^2+z^2=2x+2z
求对面积曲面积分:∫∫(x+y+z)dS ∑为球面x^2+y^2+z^2=a^2上z≥h(0
计算曲面积分 ∫∫(x^2+y^2+z^2)^-0.5ds,其中 ∑是球面x^2+y^2+z^2=a^2(z>0)
第一型曲面积分问题计算∫∫(x^2+y^2)dS 其中S是锥面z^2=3(x^2+y^2)被平面z=0和z=3所截的部分
计算曲面积分ds/x^2+y^2+z^2.其中L是介于平面z=0及z=h之间的圆柱面x^2+y^2=R^2