等差数列{An}的前n项和为Sn,已知S10=100,S100=10,求S110.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:30:00
等差数列{An}的前n项和为Sn,已知S10=100,S100=10,求S110.
等差数列{An}的前n项和为Sn,已知S10=100,S100=10,求S110.
等差数列{An}的前n项和为Sn,已知S10=100,S100=10,求S110.
方法1 由等差数列的前n项和的公式特点,可设Sn=An+Bn,则S10=10A+10B=100,S100=100A+100B=10,两式相减得,(100-10)A+(100-10)B= -(100-10),∴110A+B= -1,∴S110=110A+110B=110(110A+B)= -110 方法2 a10=a1+9d a100=a1+99d s10=10(a1+a10)/2=5(2a1+9d)=100 2a1+9d=20 s100=100(a1+a100)/2=50(2a1+99d)=10 2a1+99d=0.2 99d-9d=0.2-20 d=-0.22 a1=10.99 s110=110(2a1+109*(-20))/2=55*(2*10.99+109*(-0.22))=-110 方法3 由题意可假设an=a+nd,d为公差 则有:Sm=am+dm(m+1)/2=n Sn=an+dn(n+1)/2=m 解得:d=-(2m+2n)/mn a=(m^2+n^2+mn+m+n)/mn 所以:S(m+n) =(m+n)a+d(m+n)(m+n+1)/2 =-m-n 所以可得S110=-10-100=-110 方法4 S10=a1+……+a10 S100=a1+……+a100 S100-S10=a11+……+a100=-90 45(a11+a100)=-90 a11+a100=-2 S110=110(-2)/2=-110 所以最后等于负110 方法5 解设每项相差m S20=S10+(S10+10*10m) S100=10S10+90m*10+80m*10+70m*10+60m*10+50m*10+40m*10+30m*10+20m*10+10m*10 S110=S100+S10+100m*10 =-110