三角形ABC中,AD是三角形ABC的中线,AE为三角形ABD的中线,AB=DC,∠BAD=∠BDA,求证 AC=2AE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 22:33:31

三角形ABC中,AD是三角形ABC的中线,AE为三角形ABD的中线,AB=DC,∠BAD=∠BDA,求证 AC=2AE
三角形ABC中,AD是三角形ABC的中线,AE为三角形ABD的中线,AB=DC,∠BAD=∠BDA,求证 AC=2AE

三角形ABC中,AD是三角形ABC的中线,AE为三角形ABD的中线,AB=DC,∠BAD=∠BDA,求证 AC=2AE
1) 取AB中点F,联结DF ;DF平行于AC且D/F分别为各边中点,所以AC=2DF,要证AC=2AE,只需证AE=DF
2) 在三角形ADF和DAE中,AF=DE(中点平分),AD=DA,角DAFF=角EDA(等腰三角形)
所以三角形ADF和DAE全等
所以AE=DF
3) 所以AC=2AE

我忘记了好多,如果我以前我很拿手,我只能提供下面这些,希望有点帮助
AB=AC
AB=AD
BD=AB
∠BAD=∠BDA=∠DAC
我脑子不灵活了,都忘记了,关键找出证明AB=2AE