如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线,求证AE=EF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:30:18
如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线,求证AE=EF
如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线,求证AE=EF
如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线,求证AE=EF
(1)∵在线段AB上取AB的中点M,连接ME,则AM=EC,
∴BM=BE,
∴∠BME=∠BEM=45°,
∴∠AME=135°;
(2)证明:在线段AB上取AB的中点M,连接ME,则AM=EC,
∵点E是边BC的中点.∠AEF=90°,且EF交∠DCG的平分线CF于点F,
∴∠FCG=45°,
∴∠ECF=135°,
∵∠FEC+∠AEB=90°,∠AEB+∠BAE=90°,
∴∠MAE=∠FEC,EC=AM,
∴△AME≌△CEF,
∴AE=EF;
(3)证明:在线段AB上取AB边上的点N,连接NE,则AN=EC,
∵点E是边BC边上的点.∠AEF=90°,且EF交∠DCG的平分线CF于点F,
∴∠FCG=45°,
∴∠ECF=135°,
∵∠ANE=90°+45°=135°,
∴∠ECF=∠ANE=135°,
∵∠FEC+∠AEB=90°,∠AEB+∠BAE=90°,
∴∠NAE=∠FEC,EC=AN,∠ECF=∠ANE=135°,
∴△ANE≌△CEF,
∴AE=EF.
已知,如图,四边形ABCD是正方形,点E在BF上,若四边形AEFC是菱形,求菱形面积
如图已知E、F分别是正方形ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;
如图,四边形ABCD是正方形,点E是AB的中点,则tan∠ACE=
如图,正方形ABCD的边长为6m,点E是AB边上的动点四边形EFGH是正方形,则正方形EFGH面积最小值为
请教一道数学题:数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点∠AEF=900数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点∠AEF=900,且EF交正方
如图1四边形ABCD是正方形,G是CD边上的一个动点
如图 点e,f分别是矩形abcd边ad和bc上的点,且四边形abfe是正方形,矩形efdc
如图,四边形ABCD是正方形,点E是AB边上的点,BE=1,将△BCE绕点C顺时针旋转90°得到△DCF.已知EF=2√5.求正方形ABCD的边长.
如图 四边形ABCD是正方形 点E F G H分别在边AB BC CD DA上 连接EF GH (如图 四边形ABCD是正方形 点E F G H分别在边AB BC CD DA上 连接EF GH (1)如果EF=GH 求证EF垂直GH(2)如果EF垂直GH 求证EF等于GH
已知,如图,四边形ABCD是正方形,点E在BF上,若四边形AEFC是菱形,则∠EAB的度数是
如图,四边形ABCD是正方形,E是正方形ABCD内一点,F是正方形ABCD外一点,连结BE,CE,如图,四边形ABCD是正方形,E是正方形ABCD内一点,F是正方形ABCD外一点,连结BE、CE、DE、BF、CF、EF.(1)若∠EDC=∠FBC,ED=FB,
急 如图1,2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且如图,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑
如图,四边形ABCD是正方形,点G是BC上任意一点,DE垂直AB于点E,BF垂直AG于点F,当点G如图,四边形ABCD是正方形.点G是BC上的任意一点,DE⊥AG于点E,BF//DE,且交AG于点F.1当G为BC边中点时,探究线段EF与GF之间
已知:如图,四边形ABCD是正方形,点E在BF上,若四边形AEFC是菱形,则∠EAB的度数是多少?
如图:已知四边形ABCD是正方形,四边形ACEF是菱形,点E、F、B在同一直线上,求证:AE、AF三等分∠CAB
四边形ABCD是正方形,点E是边BC的中点(如图1),角AEF=90,EF与正方形外角的平分线CF交于F.求证:AE=EF
如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线,求证AE=EF
如图四边形ABCD是正方形点E是BC的中点角AEF=90度EF交正方形外角平分线CF于F取边AB的中点G连接EG(1)求...如图四边形ABCD是正方形点E是BC的中点角AEF=90度EF交正方形外角平分线CF于F取边AB的中点G连