设集合A={α|α=3/4×k×180度,k∈Z},B={β|β=5/6×k×180度,k∈Z,-10≤k≤10}求A∩B中的角为终边相同角的集合C.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:35:01

设集合A={α|α=3/4×k×180度,k∈Z},B={β|β=5/6×k×180度,k∈Z,-10≤k≤10}求A∩B中的角为终边相同角的集合C.
设集合A={α|α=3/4×k×180度,k∈Z},B={β|β=5/6×k×180度,k∈Z,-10≤k≤10}求A∩B中的角为终边相同角的集合C.

设集合A={α|α=3/4×k×180度,k∈Z},B={β|β=5/6×k×180度,k∈Z,-10≤k≤10}求A∩B中的角为终边相同角的集合C.
因为 A={α|α=3/4×k×180度,k∈Z},B={β|β=5/6×k×180度,k∈Z,-10≤k≤10}
所以 3/4π*k1=5/6π*k2
又因为 k1、k2∈Z,-10≤k2≤10
所以 k1=10/9*k2
即 k2=9或-9,k1=10或-10
所以 C=A∩B={-15π/2,15π/2}

C={-15/2π,15/2π}