f'(x)在(0,1)上有界,证明f(x)在(0,1)上有界
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:29:42
f'(x)在(0,1)上有界,证明f(x)在(0,1)上有界
f'(x)在(0,1)上有界,证明f(x)在(0,1)上有界
f'(x)在(0,1)上有界,证明f(x)在(0,1)上有界
令(a,b)∈(0,1)
根据中值定理,如果f(x)在(a,b)上连续可导,那么在(a,b)内至少存在一点ξ(a
f(x)在(-∞,+∞) 二阶可导,f(x)/x=1,且f''(x)>0,证明f(x)>=x
f'(x)在(0,1)上有界,证明f(x)在(0,1)上有界
证明f(x)=1/x+2,在x>0时,f(x)单调递减
函数F(x)满足下列性质 f(a+b)=f(a)f(b) f(0)=1 f(x)在x=0处可导 证明对任意X有 f'(x)=f'(0)f(x)
证明:若函数f(x)在满足关系式f'(x)=f(x),且f(0)=1,则f(x)=e^x
证明:若函数f(x)在(-oo,+oo)内满足关系式f'(x)=f(x),且f(0)=1,则f(x)=e^x
证明:若函数f(x)在满足关系式f'(x)=f(x),且f(0)=1,则f(x)=e^x如题
证明若函数f(x)在R内可导且f'(x)=f(x),f(0)=1,则f(x)=e^x
证明:若函数f(x)在(-∞,+∞)内满足不等式f'(x)=f(x),且f(0)=1,则f(x)=e∧x
设函数f(x)在(-∞,+∞)可导,且满足f(0)=1,f'(x)=f(x),证明f(x)=e^x
设函数f(x)=x-xlnx.证明f(x)在区间(0,1)上是增函数.
设函数f(x)在(-∞,+∞)内有定义,f(0)不等于0,f(xy)=f(x)f(y),证明:f(x)=1
有一个函数f(x),f(x)=f'(x),f(0)=1,证明:f(x)=e^x
高等数学f(x+y)=f(x)+f(y)/1-f(x)f(y),求f(x)f(x+y)=f(x)+f(y)/1-f(x)f(y),则f(x)=tan(ax)怎么证明?f(x)在(-∞,+∞)上有定义,且f'(x)=a(a不等于0)
f(x)在(0,1)上连续,f(0)=f(1)=0,证明必存在f''(x)=2f'(x)/(1-x)
f(x)在〔0,1〕上连续.f(0)=f(1)证明存在x使f(x)=f(x+0.5)
证明:f(x)在[0,1]连续,f(0)=f(1),则存在x0(0
f'(x)在(0,1)有界,怎么证明f(x)在(0,1)有界