抛物面、圆柱面、椭球面的方程有什么特点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:06:39

抛物面、圆柱面、椭球面的方程有什么特点
抛物面、圆柱面、椭球面的方程有什么特点

抛物面、圆柱面、椭球面的方程有什么特点
二次曲面一般形式为 ax^2+by^2+c z^2
+2d xy+2eyz+2fxz+gx+hy+iz+j=0
考虑观测者在无穷远处观测,方程的一次项和常数项都是小量,因此形状取决于二次式
ax^2+by^2+c z^2
+2d xy+2eyz+2fxz=0
写为
(x,y,z)A(x,y,z)^T=0,
A 为矩阵
a d f
d b e
f e c
用相似变换将其对角化
得到S
s1 0 0
0 s2 0
0 0 s3
对应方程(z1,z2,z3)S(z1,z2,z3)^T=0
分如下几种情况
s1,s2,s3 都是正或都是负的,z=0,对应在无穷远处收缩为0的点,正是椭球在无穷远处的情形;
s1,s2,s3 两正一负或两负一正,对应无穷远处锥形,正是双曲面在无穷远处的情形;
s1,s2,s3 两正一零或两负一零,对应无穷远处收缩为线,正是抛物面在无穷远处的情形.不过严格的抛物面对应的两个非零s还要相等;
s1,s2,s3 一正一负一零,对应无穷远处收缩为两个面,正是双曲柱面在无穷远处的情形;
s1,s2,s3 两零,对应无穷远处收缩为细线形,正是椭圆柱面在无穷远处的情形.不过严格的圆面对应的两个非零s还要相等;
s1,s2,s3 两零,对应无穷远处收缩为一个线,正是抛物面在无穷远处的情形;