求I=lim[1/√(4n^2-1)+1/√(4n^2-2^2)+...+1/√(4n^2-n^2)]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:58:23
求I=lim[1/√(4n^2-1)+1/√(4n^2-2^2)+...+1/√(4n^2-n^2)]
求I=lim[1/√(4n^2-1)+1/√(4n^2-2^2)+...+1/√(4n^2-n^2)]
求I=lim[1/√(4n^2-1)+1/√(4n^2-2^2)+...+1/√(4n^2-n^2)]
原式=lim1/n[1/√(4-(1/n)^2)+1/√(4n^2-(2/n)^2)+...+1/√(4n^2-(n/n)^2)]
=1/√(4-x^2)在0到1上的积分
即arcsin(x/2)|0,1=pi/6
求limΣ(1/(n+(i^2+1)/n))(是i=1到n,n趋近无穷大)
求I=lim[1/√(4n^2-1)+1/√(4n^2-2^2)+...+1/√(4n^2-n^2)]
lim (1+2/n)^n+4 n-->无穷大 求极限
求下列极限 lim(n→∞)∑(上n 下i=1) sin π/(√(n^2+i))
求极限 lim(n→∞) tan^n (π/4 + 2/n) lim(n→∞)tan^n(π/4+2/n) =lim(n→∞)[(tan(π/4)+tan(2/n))/(1-tan(π/4)tan(2/n))]^n =lim(n→∞)[(1+tan(2/n))/(1-tan(2/n))]^n =lim(n→∞)(1+tan(2/n))^n/(1-tan(2/n))^n (1) 因为 lim(n→∞)(1+tan(2/n)
若lim[(2n-1)an]=1 求lim(n*an)的值
数列极限(已知lim[(2n-1)an]=2,求lim n*an)
求lim(n→∞)∑(i=1到n)[e^((1/n)sin(i/n))-1]
求极限,lim(1+n)(1+n^2)(1+n^4)-----(1+n^2n)=?(n趋于无穷)
lim√2n(√(n+3a)-√n)=1求a
lim[(4+7+...+3n+1)/(n^2-n)]=
lim(1/n+2/n+3/n+4/n+5/n+……+n/n)=lim(1/n)+lim(2/n)+……+lim(n/n)成立吗?(n趋近于无穷大)为什么不成立?
用夹逼定理求lim(n→∞)[√(n^2+n)-n]^(1/n)
用夹逼定理求lim(n→∞)√[(n^2+n)-n]^(1/n)
求lim(n+1)(n+2)(n+3)/(n^4+n^2+1)
求极限lim 2/(3^n-1)
若lim(2n-√4n^2+an+3)=1,n→∞,求a.
lim(1-1/n)^(n^2)=?