使不等式1/n(n+1)+1/(n+1)(n+2)+...+1/(2n-1)2n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:30:19
使不等式1/n(n+1)+1/(n+1)(n+2)+...+1/(2n-1)2n
使不等式1/n(n+1)+1/(n+1)(n+2)+...+1/(2n-1)2n
使不等式1/n(n+1)+1/(n+1)(n+2)+...+1/(2n-1)2n
1/n(n+1)+1/(n+1)(n+2)+...+1/(2n-1)2n
=1/n-1/(n+1)+1/(n+1)-1/(n+2)+...+1/(2n-1)-1/2n
=1/n-1/2n
=1/2n=1
则0
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
使不等式1/n(n+1)+1/(n+1)(n+2)+...+1/(2n-1)2n
证明不等式 1+2n+3n
证明不等式 3^n>(n+1)!
证明不等式:[(n+1)/e]^(n)
不等式求解法:n*(n+1)/2
1.使不等式1/(n+1)+1/(n+2)+1/(n+3)+...+1/(2n+1)
解不等式n(n+1)(2n-1)
证明不等式:(1/n)的n次方+(2/n)的n次方+……+(n/n)的n次方
证明不等式 log(n)(n-1) * log(n)(n+1)<1 (n>1)
求使不等式/3n/2n+1-3/2/
+++求使不等式|3n/n+1 -3|
证明不等式1/(n+1)
证明不等式 (n+1)/3
证明对任意的正整数n,不等式In(n+1)/n<(n+1)/n^2证明对任意的正整数n,不等式In(n+1)/n
n^(n+1/n)/(n+1/n)^n
数学不等式证明题n=1,2,……证明:(1/n)^n+(1/2)^n+……+(n/n)^n第二个是(2/n)^n
2^n/n*(n+1)