一道数学题:如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.过点A作AP∥BC交抛物线于点P.(1)求A、B、C三点的坐标以及直线BC的解析式;(2)求点P的坐标以及四边形ACBP的面积;(
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:31:47
一道数学题:如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.过点A作AP∥BC交抛物线于点P.(1)求A、B、C三点的坐标以及直线BC的解析式;(2)求点P的坐标以及四边形ACBP的面积;(
一道数学题:如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.过点A作AP∥BC交抛物线于点P.
(1)求A、B、C三点的坐标以及直线BC的解析式;
(2)求点P的坐标以及四边形ACBP的面积;
(3)在抛物线上是否存在点M,过点M作MN垂直x轴于点N,使以A、M、N三点为顶点的三角形与三角形PCA相似.若存在,求出M点的坐标;若不存在,请说明理由.
一道数学题:如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.过点A作AP∥BC交抛物线于点P.(1)求A、B、C三点的坐标以及直线BC的解析式;(2)求点P的坐标以及四边形ACBP的面积;(
(1)令y=0,
得x2-1=0
解得x=±1,
令x=0,得y=-1
∴A(-1,0),B(1,0),C(0,-1);(2分)
(2)∵OA=OB=OC=1,
∴∠BAC=∠ACO=∠BCO=45°.
∵AP∥CB,
∴∠PAB=45°.
过点P作PE⊥x轴于E,则△APE为等腰直角三角形,
令OE=a,则PE=a+1,
∴P(a,a+1).
∵点P在抛物线y=x2-1上,
∴a+1=a2-1.
解得a1=2,a2=-1(不合题意,舍去).
∴PE=3(4分).
∴四边形ACBP的面积S= 12AB•OC+ 12AB•PE
= 12×2×1+ 12×2×3=4;(6分)
(3)假设存在
∵∠PAB=∠BAC=45°,
∴PA⊥AC
∵MG⊥x轴于点G,
∴∠MGA=∠PAC=90°
在Rt△AOC中,OA=OC=1,
∴AC= 2
在Rt△PAE中,AE=PE=3,
∴AP=3 2(7分)
设M点的横坐标为m,则M(m,m2-1)
①点M在y轴左侧时,则m<-1.
(ⅰ)当△AMG∽△PCA时,有 AGPA=MGCA.
∵AG=-m-1,MG=m2-1.
即 -m-132=m2-12
解得m1=-1(舍去)m2= 23(舍去).
(ⅱ)当△MAG∽△PCA时有 AGCA=MGPA,
即 -m-12=m2-132.
解得:m=-1(舍去)m2=-2.
∴M(-2,3)(10分).
②点M在y轴右侧时,则m>1
(ⅰ)当△AMG∽△PCA时有 AGPA=MGCA
∵AG=m+1,MG=m2-1
∴ m+132=m2-12
解得m1=-1(舍去)m2= 43.
∴M( 43,79).
(ⅱ)当△MAG∽△PCA时有 AGCA=MGPA,
即 m+12=m2-132.
解得:m1=-1(舍去)m2=4,
∴M(4,15).
∴存在点M,使以A、M、G三点为顶点的三角形与△PCA相似
M点的坐标为(-2,3),( 43,79),(4,15)
(1)、抛物线y=x^2-1与x轴交于A、B两点,与y轴交于点C,所以A、B、C三点的坐标分别为(-1,0)、(1,0)、(0,-1)。BC的解析式为y=x-1。
(2)因为AP∥BC交抛物线于点P点,所以AP的解析式为y=x+1。联立y=x^2-1,解得点P的坐标为(2,3)。因为AC的解析式为y=-x-1,所以角ACB=90度,四边形ACBP是直角梯形。BC=AC=根号2,AP=3根号...
全部展开
(1)、抛物线y=x^2-1与x轴交于A、B两点,与y轴交于点C,所以A、B、C三点的坐标分别为(-1,0)、(1,0)、(0,-1)。BC的解析式为y=x-1。
(2)因为AP∥BC交抛物线于点P点,所以AP的解析式为y=x+1。联立y=x^2-1,解得点P的坐标为(2,3)。因为AC的解析式为y=-x-1,所以角ACB=90度,四边形ACBP是直角梯形。BC=AC=根号2,AP=3根号2,四边形ACBP的面积=(根号2+3根号2)/2*根号2=4。
(3)、设M(x,x^2-1),则N(x,0),连接AM,MN=x^2-1,AN=x+1。AN:PA=(x+1):3根号2,MN:AC=(x^2-1):根号2,AN:PA不等于MN:AC,所以抛物线上不存在点M,使以A、M、N三点为顶点的三角形与三角形PCA相似。
收起