∫secxdx=ln|secx+tanx|+C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:42:52
∫secxdx=ln|secx+tanx|+C
∫secxdx=ln|secx+tanx|+C
∫secxdx=ln|secx+tanx|+C
怎么了,正确的呀
不定积分最好的办法是求导验证
∫secxdx=ln|secx+tanx|
∫secxdx=ln|secx+tanx|+C
∫secxdx =∫secx(secx+tanx)dx//(secx+tanx) =∫(sec∫secxdx=∫secx(secx+tanx)dx//(secx+tanx)=∫(sec²x+tanxsecx)dx/(secx+tanx)==∫d(tanx+secx)/(secx+tanx)=ln|secx+tanx|+C (问:第一个式子中的// 表示什么?)
问一个微积分问题过程中分别用到了那些积分公式?∫(secx)^3dx=∫secxd(tanx)=secxtanx-∫secx(tanx)^2dx=secxtanx-∫secx[(secx)^2-1]dx=secxtanx-∫(secx)^3dx+∫secxdx=secxtanx+ln|secx+tanx|-∫(secx)^3xdx第一步,第二步减
∫(23*secx)/sqrt(25*ln(secx+tanx))=?
不定积分公式推导∫secx=ln|secx+tanx|+C
∫x(tanx)^2dx=∫xd(secx)=xsecx-∫secxdx=xsecx-ln|secx+tanx|+C 这题解的有错吗上面是我的解法,书上的答案是-1/2x^2+xtanx+ln|cosx|+C,请问这两个答案是不是一样的都对啊,那怎么证明呢
求导 y=ln(secx+tanx)=[1/(secx+tanx)]*(secxtanx+(secx)^2)=secx
如何证明:∫secx^3dx=1/2[secxtanx+ln|secx+tanx|]+C
∫secx(secx-3tanx)dx=?
为什么ln|(1+sinx)/cosx|=ln|secx+tanx|
设y=ln(tanx+secx),求dy/dx
y=ln(secx+tanx)的周期是多少?
y=ln(secx+tanx)为什么是奇函数
2∫(tanx)^3dx=?2∫(tanx)^3dx=2∫tanx[(secx)^2-1]dx=2∫tanxd(tanx)-2ln|cosx|=(tanx)^2-2ln|cosx| 其中在2∫tanx(secx)^2dx中若化为2∫secxd(secx)则得到(secx)^2…=口=怎么回事!求解QAQ…
求∫secx(secx-tanx)
求证:(1+secx+tanx)/(1+secx-tanx)=secx+tanx
y=ln(secx+tanx)求导.实在是想不通.方法一:y'=[1/(secx+tanx)]*(secxtanx+sec²x) =(secxtanx+sec²x)/(secx+tanx) =secx(secx+tanx)/(secx+tanx) =secx可是方法二:secx+tanx=tanx/2,那么y'=lntanx/2=[1/(tanx/2)]*sec²x*1/2=cscx