1设α1,α2,αn,β是向量空间中的向量,β是α1,α2,αn的线性组合,证明:如果β与每个αi(i=1,2,n)正交,那么β=0.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:47:05

1设α1,α2,αn,β是向量空间中的向量,β是α1,α2,αn的线性组合,证明:如果β与每个αi(i=1,2,n)正交,那么β=0.
1设α1,α2,αn,β是向量空间中的向量,β是α1,α2,αn的线性组合,证明:如果β与每个αi(i
=1,2,n)正交,那么β=0.

1设α1,α2,αn,β是向量空间中的向量,β是α1,α2,αn的线性组合,证明:如果β与每个αi(i=1,2,n)正交,那么β=0.
由已知
β=k1α1+k2α2+...+knαn
所以 (β,β)=k1(α1,β)+k2(α2,β)+...+kn(αn,β) = 0
所以 β = 0.

向量空间证明题怎么证明?设α1,α2...,αn和β1,β2,...βn是n维列向量空间R^n的两个基,证明:向量集合 V={α∈R^n|α=∑(i=1到n)kiαi=∑(i=1到n)kiβi}是R^n的子空间. 1设α1,α2,αn,β是向量空间中的向量,β是α1,α2,αn的线性组合,证明:如果β与每个αi(i=1,2,n)正交,那么β=0. 大家来帮帮我,关于线型代数的设T是线型空间V中的线型变换,则下列说法错误的是()1.T(0)=0;2.T(α+β)=T(α)+T(β);3.设向量组α1,α2,L,αn线型无关,则向量组T(α1),T(α2),L,T(αn)也线型无关;4. 高等代数 设V是由n维实向量在标准度量下构成的欧氏空间,α是V中的一个单位向量,证明必存在一高等代数设V是由n维实向量在标准度量下构成的欧氏空间,α是V中的一个单位向量,证明必存在一 设V是一个n维欧式空间,a1,a2,.,am是V中的正交向量组,令:W={α | (a,ai)=0,α∈ V ,i=1,2,...m}证明:W是V的一个子空间证明:W的正交补 =L(a1,12,...an) 设n维向量空间V.有一组基αl,α2,…,αn,另外,α1,α1+α2,...,α1+α2+…+αn也是Vn的基.又设向量ξ关于前一组基的坐标是(n,n一1,...2,1).求ξ关于后一组基的坐标 N维向量空间向量的秩,证明题设A:α1,α2,……,αr,β,γ,…是若干个n维向量构成的向量组,证明α1,α2,……,αr是A的一个最大线性无关组的充要条件是下面条件都成立:(1)α1,α2,……αr与原向量 n维向量空间的每个向量是不是n维的?即若α1α2α3是向量空间的一个基,那么α1α2α3都只有3个元素吗 设W是n维向量空间V中的一个子空间,且0 空间向量与平行关系!设向量U实施平面α的法向量,向量A是直线L的方向向量,判断直线L与α的位置关系.(1)向量U=(2,2,-1) 向量A=(-3,4,2)(2) 向量U=(0,2,-3) 向量A=(0,-8,12)设向量U,V分别是平面 证明向量组线性无关的问题!设向量β是向量组α1,α2,...,αn的线性组合,β=k1*α1,k2*α2,...,kn*αn,若向量组α1,α2,...,αn线性无关,证明β+α1,α2,...,αn线性无关.对了 还有 n>=2且K不等于-1 有关空间向量的两个判断题!1、将空间中所有的单位向量移到同一个点为起点,则他们的终点构成一个圆.2、空间向量就是空间中的一条有向线段. 证明α1,α2,…αn线性无关充分必要条件是任一n维向量都可以由它们线性表示设α1,α2,…αn是一组n维向量, 设α是非齐次线性方程组AX = B的解向量,β是AX = o 的解向量,则 1/2 (α + β )是方程组?的解向l量 设向量β可以被向量α1,α2,…αn线性表出,证明:α1,α2…αn线性无关的充分必要条件是表示系数唯一. 设向量β可以被向量α1,α2,…αn线性表出,证明:α1,α2…αn线性无关的充分必要条件是表示系数唯一. 设线空间中α1,α2,……,αm线性无关,且向量组α1,α2,……αm,β线性相关,则β可由α1,α2,……,αm线性表出,且表出是唯一的 这个如何证明啊?这是矩阵分析中的一条定理,他没有证明. 线性代数向量空间问题为什么v0是一个n-1维空间?为何不是n维