一道初二关于相似三角形的题如图,ΔABC中,D为BC中点,AD=AC,DE垂直BC,与AB交于E,EC与AD相交与点F,求证:(1)ΔABC相似ΔFCD (2)AF=FD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:04:02
一道初二关于相似三角形的题如图,ΔABC中,D为BC中点,AD=AC,DE垂直BC,与AB交于E,EC与AD相交与点F,求证:(1)ΔABC相似ΔFCD (2)AF=FD
一道初二关于相似三角形的题
如图,ΔABC中,D为BC中点,AD=AC,DE垂直BC,与AB交于E,EC与AD相交与点F,求证:(1)ΔABC相似ΔFCD (2)AF=FD
一道初二关于相似三角形的题如图,ΔABC中,D为BC中点,AD=AC,DE垂直BC,与AB交于E,EC与AD相交与点F,求证:(1)ΔABC相似ΔFCD (2)AF=FD
(1)因为ED垂直于BC,所以∠EDB=∠EDC=90°,又因为D为中点,所以BD=DC,且ED=DE,所以△BDE全等△EDC,所以∠B=∠ECD,又因为AD=AC,所以∠ADC=∠ACD,所以ΔABC相似ΔFCD(角角)
(2)因为ΔABC相似ΔFCD,所以FD/AC=CD/BC,因为D为中点,所以FD/AC=CD/BC=1/2,又因为AC=AD,所以FD/AD=1/2,所以F为中点,所以AF=FD.
你考试?我之难而退。只怪我那时候没专心学啊。后悔了
由已知得:ED垂直于BC,又因为D是BC的中点,所以得BEC是等腰三角形,即BE=EC,所以角EBC=角ECB,又因为AD=AC,所以角ADC=角ACD
三角形ABC与三角形FCD有两个角各自相等,所以两者相似
由两者相似得到FD/AC=DC/BC=1/2(D是中心)
所以FD=AC/2=AD/2,又因为AD=FD+AF
所以AF=FD...
全部展开
由已知得:ED垂直于BC,又因为D是BC的中点,所以得BEC是等腰三角形,即BE=EC,所以角EBC=角ECB,又因为AD=AC,所以角ADC=角ACD
三角形ABC与三角形FCD有两个角各自相等,所以两者相似
由两者相似得到FD/AC=DC/BC=1/2(D是中心)
所以FD=AC/2=AD/2,又因为AD=FD+AF
所以AF=FD
收起
(1)、因为 DE垂直BC,BD=CD,所以DE是BC垂直平分线,所以 角ABC=角FCD
又 AD=AC ,所以 角ACD=角FDC
综上,ΔABC相似ΔFCD
(2)、因为 ΔABC相似ΔFCD ,所以BC:CD=AC:FD=2:1,所以 AC=2FD
...
全部展开
(1)、因为 DE垂直BC,BD=CD,所以DE是BC垂直平分线,所以 角ABC=角FCD
又 AD=AC ,所以 角ACD=角FDC
综上,ΔABC相似ΔFCD
(2)、因为 ΔABC相似ΔFCD ,所以BC:CD=AC:FD=2:1,所以 AC=2FD
又 AC=AD,所以 AD=2FD=FD+AF,
所以 AF=FD
收起
(1)∵BD=CD
ED⊥CD
∴△EDB全等于△EDC
∴∠ABC=∠DCF
又∵在△ADC中 AD=AC
∴∠ADC=∠ACD
可得:∵∠ABC=∠DCF
∠ACB=∠ADC
∴△ABC相似△FCD
全部展开
(1)∵BD=CD
ED⊥CD
∴△EDB全等于△EDC
∴∠ABC=∠DCF
又∵在△ADC中 AD=AC
∴∠ADC=∠ACD
可得:∵∠ABC=∠DCF
∠ACB=∠ADC
∴△ABC相似△FCD
(2)∵△ABC相似△FCD
CD=1/2BC
∴DF=1/2AC=1/2AD
∴DF=AF
收起
证明:(1)因为D为BC中点,且DE垂直BC,则EB=EC,所以角EBC=角ECD
又AD=AC 角ADC=角ACB ΔABC与ΔFCD两角对应相等 可证明其相似
(2)由(1)ΔABC相似ΔFCD 则对应边成比例 FD/AC=CD/BC=1/2
即AC=2FD 又AD=AC 则AD=2FD AF=FD
xiang
自己做啊。又不难。
虽然我做了1小时,包括代数计算,几何证明,向量计算,甚至微积分,但是这道题还是道简单的题。
自己做多好!
1. 因为AD=AC
所以角ADC=角ACD
因为DE垂直BC且D为BC中点
所以ΔBDE全等于ΔCDE
所以角ABC=角FCD
因为角ADC=角ACD
所以ΔABC相似ΔFCD