微分方程y'''=(α+β)y'+e^ (α+β)x的通解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:55:02
微分方程y'''=(α+β)y'+e^ (α+β)x的通解
微分方程y'''=(α+β)y'+e^ (α+β)x的通解
微分方程y'''=(α+β)y'+e^ (α+β)x的通解
推荐答案真好玩.
令a=α+β
(1)若a=α+β=0
y'''=1
y''=x+A
y'=x^2/2+Ax+B
y=x^3/6+Ax^2/2+Bx+C
(2)其它
y'''=ay'+exp(a*x)
这是线性常微分方程
先求齐次解
y'''=ay'
令z=y'
z''=az
z''-az=0
特征根方程为
r^2-a=0
r=±根号a
先不管a是正的还是负的,大不了得到一个复数
z=A'exp(根号a x)+B'exp(-根号a x)=y'
y=Aexp(根号a x)+Bexp(-根号a x)+C
再求特解
若a=α+β≠0,1
显然可以假设y=h*exp(ax)
a^3h-a^2h=1
h=1/[a^2(a-1)]
即y=Aexp(根号a x)+Bexp(-根号a x)+C+exp(ax)/[a^2(a-1)]
常数
貌似这个方程的解是超几何级数,不过我看到的那个是y'',不知道y'''的解是不是超几何函数,不过应该可以用级数的方法求解。
微分方程y'''=(α+β)y'+e^ (α+β)x的通解
求微分方程y''-y'+2y=e^X通解
y''-4y'+4y=e^x微分方程解
求微分方程通解 (y/x)y'+e^y=0
解微分方程y''-y'+y=e^x+3
y'=e^ysinx的微分方程通解
y'+ycosx=e^_sinx解微分方程
微分方程y'=e^x通解
y''=xy'+e^(-x),解微分方程
求微分方程的通解:Y'+Y*cosX=e^sinX
求解微分方程y''+y=e^x+cos x
微分方程y'=e的x+y次方的通解
微分方程y'=e^(2x-y)通解
求微分方程y+y=e^x+cosx的通解
求微分方程y''e^(y')=1的通解
求微分方程y'+y=e^-x的通解
求微分方程y'+y=e^(-2x)的通解
求微分方程y'+2y=e^x