P^(T)AP=B,其中A是对称矩阵,B是对角矩阵.请问当B满足什么条件时,P是正交矩阵.我认为是B的行列式不等于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:38:21

P^(T)AP=B,其中A是对称矩阵,B是对角矩阵.请问当B满足什么条件时,P是正交矩阵.我认为是B的行列式不等于0
P^(T)AP=B,其中A是对称矩阵,B是对角矩阵.请问当B满足什么条件时,P是正交矩阵.
我认为是B的行列式不等于0

P^(T)AP=B,其中A是对称矩阵,B是对角矩阵.请问当B满足什么条件时,P是正交矩阵.我认为是B的行列式不等于0
你是在反向考虑二次型的正交对角化?
还是正着来吧.反着来情况复杂呢...
A是实对称时,存在正交矩阵P,使 P^TAP = 对角矩阵B,B的主对角线上元素为A的特征值

P^(T)AP=B,其中A是对称矩阵,B是对角矩阵.请问当B满足什么条件时,P是正交矩阵.我认为是B的行列式不等于0 1. 设A为n阶对称矩阵,P为n阶可逆矩阵,证明B=(P^T)AP也是对称矩阵,且R(A)=R(B) A为实对称矩阵 P为可逆矩阵 为什么P‘AP是对称矩阵其中P'为P的转置 设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵[P^(-1)AP]^T属于特征值λ的特征向量是( )A.[P^(-1)]α B.[P^T]α C.Pα D.{[P^(-1)]^T}α 实对称矩阵对角化求一个正交矩阵p,使p'-1AP=B,A为实对称矩阵,B为对角矩阵,那么求出来的p应该不唯一吧! 设A,B都是n阶实对称矩阵,那么存在正交矩阵P使得 P'AP和P'BP都是对角矩阵的充分必要条件是AB=BA 设P是n阶可逆矩阵,B=P^(-1)AP-PAP^(-1),求B的特征值之和,其中P^(-1)就是P的逆设a=(a1,a2,……,an)T(T是转置的意思),b=(b1,b2,...,bn)T 满足aTb=1,求矩阵A=abT的特征值与特征向量图中的4.5两题 设A,B都是实对称矩阵,证明:存在正交矩阵P,使得(P^-1)AP=B的充分必要条件是A,B的特征值全部相同. A为n阶矩阵 B=AA^T 求B是对称矩阵` 设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T属于特征值r的特征向量是( ).(A)P^-1a (B)P^Ta (C)Pa (D)(P^-1)^Ta 非对称矩阵相似对角化过程中的相似变换P为什么一定是该矩阵不同特征值对应的特征向量所组成的矩阵?如已知非对称三阶矩阵A可以相似对角化,即存在可逆矩阵P使得P^(-1)AP=diag(a,b,c).为什么 设A,B为n阶是对称可逆矩阵,则错误的是(D)请问如何ABC为何成立,D为何错误!A.有可逆矩阵P,Q使得PBQ=A B.有可逆矩阵P,使得P^-1ABP=BAC.有可逆矩阵P,使得P^-1B^2P=A^2D.有正交矩阵P,使得P^-1AP=P^TAP=B 设n阶矩阵A对称正定,n阶矩阵B为对称矩阵,证明存在合同变换矩阵P,使得P'AP与P'BP均为对角矩阵 矩阵AP=PB,为什么P^(-1)AP=B 设A,B是n阶方阵,C=B^T(A+xE)B,B不等于0.证明当为对称矩阵时,也为对称矩阵; 求合同矩阵转换中的P已知A为实对称矩阵,B为对角矩阵,A与B合同但不相似,求可逆矩阵P,使P'AP=B.(P'为P的转置矩阵)想知道求解P的一般过程. 高数题:设A是对称矩阵,C=BTAB,证明C也是对称矩阵其中BT为任意矩阵B的转置,敬请高手赐教, 设α是n阶对称矩阵A属于特征值λ的特征向量,求矩阵(P-1AP)T的属于特征值λ的特征向量