设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:(1)如果AB=0,则A=0(2)如果AB=B,则A=E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:43:26
设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:(1)如果AB=0,则A=0(2)如果AB=B,则A=E
设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:
(1)如果AB=0,则A=0
(2)如果AB=B,则A=E
设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:(1)如果AB=0,则A=0(2)如果AB=B,则A=E
1)由AB=0,得R(A)+R(B)《r.又R(B)=r,故R(A)《0.显然R(A)》0.故R(A)=0
既A=0
2)如果AB=B,则AB-B =0.即(A-E)B=0,R(B)+R(A-E)《r.又R(B)=r.故R(A—B)《0.故R(A—B)=0.故A—E=0即A=E
设A为m*n矩阵,B为k*n矩阵,且r(A)+r(B)
线性代数求矩阵的秩设ABC为三个N阶矩阵,且|AB|不等于0,判断 结论R(ABC)=?R(A) ,R(ABC)=?R(C),R(ABC)=?R(B),R(ABC)=?R(AB)
设A,B均为n阶矩阵,r(A)
设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:(1)如果AB=0,则A=0(2)如果AB=B,则A=E
设A,B均为n阶矩阵,且AB=BA求证r(A+B)
设A,B均为n阶矩阵,且AB=BA,证r(A+B)
已知A,B均为n阶矩阵,且r(A)+r(B)
设A为m*n阶矩阵,B为n*m阶矩阵,且AB=E则R(A)=?,R(B)=?
设A为n阶矩阵,R(A)
设A为n阶矩阵,证明r(A^n)=r(A^(n+1))线性代数
设A,B均是n阶矩阵,且秩r(A)+r(B)
设A、B都是n阶矩阵,且AB=O,证明R(A)+R(B)
设A是m*n矩阵,r(A)=r,证明:存在秩为n-r的n阶矩阵B,使AB=0
矩阵乘积的秩设A,B为n阶矩阵,证明:r(AB)+n≥r(A)+r(B)备用符号≥≤><≠
设A使一m×n矩阵,B ,C 分别为m阶,n阶可逆矩阵,证明:r(BA)=r(A)=r(AC)
设P为m阶非奇异矩阵,Q为n阶非奇异矩阵,A为m×n阶矩阵,则() R(PA)=R(A),R(AQ)≠R(A设P为m阶非奇异矩阵,Q为n阶非奇异矩阵,A为m×n阶矩阵,则()A.R(PA)=R(A),R(AQ)≠R(A)B.R(PA)≠R(A),R(AQ)=R(A)C.R(PA)=R(A),R(AQ)=R(A)D.
设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵
设A,B均为n阶矩阵若A B,则 R(A) - R(B) = |A|- |B|=