设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明:至少存在一点C∈(0,a),使得f(C)+Cf '(C)=0后面是3f(C)+Cf '(C)=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:33:53
设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明:至少存在一点C∈(0,a),使得f(C)+Cf '(C)=0后面是3f(C)+Cf '(C)=0
设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明:至少存在一点C∈(0,a),使得f(C)+Cf '(C)=0
后面是3f(C)+Cf '(C)=0
设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明:至少存在一点C∈(0,a),使得f(C)+Cf '(C)=0后面是3f(C)+Cf '(C)=0
设 g(x)= x^3 f(x)
则 g(0)=g(a) = 0,根据中值定理,存在 C,0
证明:设f(x)在[a,b]上连续,在(a,b)内可导,(0
设f(x)在[a,b]上连续,在(a,b)上可导(0
设函数f(x)在[a,b]上连续,在(a,b)内可导(0
设f(x)在[a,b]上连续,在(a,b)内可导,(0
设f(x)在[a,b]上连续,在(a,b)内可导(0
设f(x)在[a,b]上连续,在(a,b)内可导(0
设f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,a
设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
【50分高数微积分题】设f(x)在[a,b]上连续,在(a,b)内可导 f(a)f(b)>0 f(a)f[(a+b)/2]
设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)>0,f(a)f[(a+b)/2]
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
求设f'(x)在[0,a]上连续.f(0)=0,证明|定积分f(x)d(x)
设F(x)=(f(x)-f(a))/(x-a),(x>a)其中f(x)在[a,+∞)上连续,f''(x)在(a,+∞)内存在且大于0,求证F(x)在(a,+∞)内单调递增.