定义在(-n,n)上的任意函数都可以表示为一个奇函数和一个偶函数的和,怎么证明?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 21:51:42
定义在(-n,n)上的任意函数都可以表示为一个奇函数和一个偶函数的和,怎么证明?
定义在(-n,n)上的任意函数都可以表示为一个奇函数和一个偶函数的和,怎么证明?
定义在(-n,n)上的任意函数都可以表示为一个奇函数和一个偶函数的和,怎么证明?
f(x)=[f(x)+f(-x)]/2+[f(x)-f(-x)]/2,[f(x)+f(-x)]/2就是偶函数,[f(x)-f(-x)]/2就是奇函数.
定义在(-n,n)上的任意函数都可以表示为一个奇函数和一个偶函数的和,怎么证明?如题,要求详解!可追加分!
定义在(-n,n)上的任意函数都可以表示为一个奇函数和一个偶函数的和,怎么证明?
定义在R+上的函数f(x)对于任意m,n属于R+,都有f(mn)=f(m)+f(n),x>1时,f(x)
定义在正整数集上的函数f(x)对任意m,n∈N*,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且f(1)=1,求f(x)的表达式.
证明:定义在R上的任意函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)之和.
已知定义在(0,正无穷)上的函数f(x)满足对于任意m,n,都有f(m*n)=f(m)+f(n),且当x>1,f(x)1
定义在正实数上的函数f(x),对于任意的m,n都属于正实数,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)1
定义在正实数上的函数f(x),对于任意的m,n都属于正实数,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)
已知定义在(0,1)上的函数f(x),对任意的m,n属于(1,+∝)且m
定义在R+上的函数f(x),对于任意的m,n属于R+,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)1
定义在R+上的函数f(X),对于任意的m,n属于正实数都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)
定义在R+上的函数f(x),对于任意的m,n∈R+,都有f(mn)=f(m)+f(n),x>1时,f(x)
证明定义在R上的任意函数都可以表示成一个奇函数和一个偶函数的和.如何证明?奇函数表示为g(x),偶函数表示为h(x)
已知定义在正整数集上的函数f(n)满足f(1)=8,f(2)=4而且对于任意的正整数n都有f(n+2)+f(n)=2f(n+1),则f(n)=
定义在正整数集上的函数f(x)对任意m,n∈N*,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且f(1)=1(1)求函数f(x)的表达式.(2)若m^2-tm-1
定义在正整数集上的函数f(x)对任意m,n∈N*,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且f(1)=1(1)求函数f(x)的表达式;(2)若m^2-tm-1≤f(x)对于任意的m属于[-1,1],x属于N*恒成立,求实数t的取值范围;(3)对
数学求表达式定义在正整数集上的函数f(x)对任意m.n属于正整数,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且f(1)=1.求函数f(x)的表达式.请写出详细的过程谢谢了.
定义在正整数上的函数f(x)对任意m,n∈N*,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且f(1)=1.1、求f(x)的表达式2、若m²-tm-1≤f(x)对于任意的m∈[-1,1],x∈N*恒成立,求实数t的取值范围