一等腰直角三角形ABC,∠BAC为直角,AB=AC,点M为AC中点,连接BM,过A点做AD垂直BM并交BC于D点,求证:∠AMB=∠CMD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:11:35
一等腰直角三角形ABC,∠BAC为直角,AB=AC,点M为AC中点,连接BM,过A点做AD垂直BM并交BC于D点,求证:∠AMB=∠CMD
一等腰直角三角形ABC,∠BAC为直角,AB=AC,点M为AC中点,连接BM,过A点做AD垂直BM并交BC于D点,求证:∠AMB=∠CMD
一等腰直角三角形ABC,∠BAC为直角,AB=AC,点M为AC中点,连接BM,过A点做AD垂直BM并交BC于D点,求证:∠AMB=∠CMD
证明:
过C点做CF⊥AC,交AD延长线于点F
∴∠ACF=90度
∵∠BAC=90度
∴AB‖CF
∴∠BAE=∠F
∵∠BAC=90度
∴∠BAE+∠MAE=90度
∵BM⊥AD
∴∠AMB+∠MAE=90度
∴∠BAE=∠AMB
∴∠AMB=∠F
在三角形ABM和三角形AFC中
∵AB=AC,∠ACF=∠BAC=90度,∠AMB=∠F
∴三角形ABM全等于三角形AFC(AAS)
∴AM=CF
∵AM=CM
∴CM=CF
在三角形CMD和三角形CFD中
∵∠ACB=∠FCD=45度(因为三角形ABC是等腰直角三角形,所以角ACB=45度,所以角DCF=90-45=45度),CM=CF,CD=CD
∴三角形CMD全等于三角形CFD(SAS)
∴∠F=∠DMC
又∵∠F=∠AMB
∴∠AMB=∠DMC
延长AD至F,使得CF⊥AC,
∵AB⊥AC,AD⊥BM,
∴∠ABM=∠DAC,
又∵AB=AC,CF⊥AC,
∴△ABM≌△CAF,
∴∠BMA=∠F,AM=CF,
∵∠BCA=∠BCF=45°,AM=CM=CF,DC=DC,
∴△FCD≌△MCD,
∴∠AMB=∠F=∠CMD;
证明:
过C点做CF⊥AC,交AD延长线于点F
∴∠ACF=90度
∵∠BAC=90度
∴AB‖CF
∴∠BAE=∠F
∵∠BAC=90度
∴∠BAE+∠MAE=90度
∵BM⊥AD
∴∠AMB+∠MAE=90度
∴∠BAE=∠AMB
∴∠AMB=∠F
在三角形ABM和三角形AFC...
全部展开
证明:
过C点做CF⊥AC,交AD延长线于点F
∴∠ACF=90度
∵∠BAC=90度
∴AB‖CF
∴∠BAE=∠F
∵∠BAC=90度
∴∠BAE+∠MAE=90度
∵BM⊥AD
∴∠AMB+∠MAE=90度
∴∠BAE=∠AMB
∴∠AMB=∠F
在三角形ABM和三角形AFC中
∵AB=AC,∠ACF=∠BAC=90度,∠AMB=∠F
∴三角形ABM全等于三角形AFC(AAS)
∴AM=CF
∵AM=CM
∴CM=CF
在三角形CMD和三角形CFD中
∵∠ACB=∠FCD=45度(因为三角形ABC是等腰直角三角形,所以角ACB=45度,所以角DCF=90-45=45度),CM=CF,CD=CD
∴三角形CMD全等于三角形CFD(SAS)
∴∠F=∠DMC
又∵∠F=∠AMB
∴∠AMB=∠DMC
本题是通过证明∠F=∠DMC (三角形CMD全等于三角形CFD(SAS)
∠F=∠AMB (三角形ABM全等于三角形AFC(AAS)
∴∠AMB=∠DMC
收起