1/N(N+I)+1/(N+1)(N+2)+1/(N+2)(N+3)+.+1/(N+9)(N+10)如何做?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 01:54:41
1/N(N+I)+1/(N+1)(N+2)+1/(N+2)(N+3)+.+1/(N+9)(N+10)如何做?
1/N(N+I)+1/(N+1)(N+2)+1/(N+2)(N+3)+.+1/(N+9)(N+10)如何做?
1/N(N+I)+1/(N+1)(N+2)+1/(N+2)(N+3)+.+1/(N+9)(N+10)如何做?
1/N(N+I)+1/(N+1)(N+2)+1/(N+2)(N+3)+.+1/(N+9)(N+10)
=1/n-1/(n+1)-1/(n+1)-1/(n+2)+1/(n+2)-1/(n+3)+---+1/(n+9)-1/(n+10)
=1/n-1/(n+10)
=10/[n(n+10)]
=10/(n²+10n)
2^n/n*(n+1)
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
1+i^n+i^2n+...+i^2000n=?
计算:1+i^n+i^2n+......+i^2000n(n属于N+)
(n+2)!/(n+1)!
n^(n+1/n)/(n+1/n)^n
n属于r 求1+i^n+i^2n+i^3n
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
f(x)=e^x-x 求证(1/n)^n+(2/n)^n+...+(n/n)^n
求n项和数列极限,通式为i/(i+n)就是n->无穷,1/(n+1)+2/(n+2)+3/(n+3)+...+n/2n;
(n+1)^n-(n-1)^n=?
化简:(n+1)!/n!-n!/(n-1)!
(n-1)*n!+(n-1)!*n
推导 n*n!=(n+1)!-n!
化简(n+1)(n+2)(n+3)